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This document first treats the terms in the modified Poisson-Boltzmann equation relevant for

our purpose and then a few words are devotes to solving the equation numerically. As described

in the paper, the equation of interest is the Poisson-Boltzmann equation in a cylindrical geometry,

supplemented with terms that account for the position-dependent polarization of the water and an

external potential to account for various interactions that are not included in the classical theory.

I. THEORY

The electrostatic potential V (r) is related to the charge density ρe by the following equation:
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= ρe(r), (1)

where ϵ0 is the dielectric permittivity of a vacuum, P (r) is the position-dependent polarization of

the water1 and the charge density on the right hand side follows from the density distributions of

the ionic species ρe(r) = e(ρ+(r)−ρ−(r)), which in turn is a function of the electrostatic potential.

In order to solve Eq. (1), we need to quantify the polarization term, relate the density distribution

of the ionic species to the electrostatic potential and define boundary conditions of the differential

equation.

The position-dependent polarization can be approximated in terms of the potential, according

to the step polarization (SP) model:

dP (r)

dr
=

{
0, if r < r0,

−ϵ0(ϵw − 1)d
2V (r)
dr2

, if r ≥ r0,
(2)

where ϵw is the dielectric permittivity constant of water (ϵw = 78 for the water model that we use)

and r0 is the position of the first peak in the oxygen profile. Alternatively, the position-dependent

polarization can be approximated in terms of the oxygen and hydrogen density profiles that are
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measured from the molecular dynamics simulations, following the full polarization (FP) model:

dP (r)

dr
= − (qOρO(r) + qHρH(r)) . (3)

The charges for the POL3 water model2 are qO = −0.730e and qH = 0.365e. Both models have

been applied in the paper.

We make a mean-field approximation for the density distribution of monovalent ionic species in

a thermodynamic equilibrium:

ρ±(r) = ρ0 exp
(
−β(±eV (r) + U ext

± (r))
)
, (4)

where β = 1/kBT , ρ0 is the bulk ion density, e is the elementary charge and U ext
± (r) is the external

potential profile for the cation (+) and the anion (−). Using Eq. (4) we can express the charge

density profile as:

ρe(r) = eρ0
(
exp

(
−β(eV (r) + U ext

+ (r))
)
− exp

(
β(eV (r)− U ext

− (r))
))

. (5)

Combining this result with Eqs. (1) and (3) gives us the differential equation to solve, with the

external potentials and the boundary conditions to specify next. The external potentials for the

cation and anion species consist of the sum of three contributions: U ext
± = U im+ULJ

± +Uhyd
± . Each

of these terms will be briefly discussed in the following.

The image charge potential describes the interaction between ions and a dielectric interface,

which is located at a distance r0 from the wall.3,4 The image potential is given by:

U im(r) =

(
ϵw − 1

ϵw + 1

)
e2 exp(−2(r − r0)/λ)

16πϵ0ϵw(r − r0)
, (6)

where λ is the Debye screening length, given by:

λ =

√
ϵ0ϵw

2βe2ρ20
. (7)

For our systems, the Debye length is λ = 2.24 Å.

The ion-wall Lennard-Jones interaction ULJ
± is a term that accounts for the Lennard-Jones

interactions between an ion and the wall. This term depends strongly on the configuration of the

wall. We calculated this term for our system by placing an ion at different positions in the carbon

nanotube and for each position summing all the interactions between the ion and the wall atoms.

The sampling can be done either by placing the ion at random positions in the channel and using

a histogram method, or by systematically scanning a part of the domain that is sufficiently large

to account for the structure of the wall (e.g., the hexagonal carbon lattice). We have applied the

latter approach in order to exploit the highly regular structure of the carbon. After averaging the

collected information over the angular direction and the tube direction one obtains as a function

of the radial position only.

The hydrophobic solvation energy term describes the solvation energy associated with the re-

moval of ions from the water. The expression for this term is given by:

Uhyd
± (r) = C0 (v

imm
± (r)− vion± ), (8)
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where C0 is the solvation free energy per unit volume, vion± is the total volume of and ion with

a solvent-excluded diameter of σ±, and vimm
± (r) = π(3/2σ±r

2
± − r3±)/3 for 0 ≤ r± ≤ σ±, where

r± = r − r0 + σ±/2.

Figure S1 shows the contributing terms discussed above as well as the total external potential

for the cation (+) and the anion (−). As expected, the location of the energy well for the cation is

closer to the negatively charged wall (located at r = 15 Å) than that of the anion. Note that the

calculated profiles depend on the configuration of the wall as well as on the material of the wall

and the ions. However, no electrostatic effects are included in the external potential, since these

are already fully accounted for by the electrostatic potential V (r).
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FIG. S1: (color online) External potential between an ionic particle and the carbon nanotube.

Many studies have been devoted to calculating the potential of mean force (PMF)5,6 directly

from molecular simulations as an alternative to the approach described above. The PMF calcula-

tions deviate from our approach in the sense that simulation data of the ionic species is used in

the calculation of the mean force. This is inconsistent with our objective, since we try to predict

the distribution of the ionic species, rather than using it as input. However, a comparison between

a calculated PMF and our theoretical treatment can be used to confirm or optimize the terms in

the external potential. Such a fine-tuning of the external potential is not pursued here since our

simulation parameters do not correspond to a regime in which an accurate quantitative prediction

can be made with the MPB equation.

II. SOLVING THE EQUATION

The Poisson-Boltzmann equation can only be solved analytically in a few special cases, e.g., with

certain boundary conditions and by making assumptions to simplify the equation. The modified

Poisson-Boltzmann problem considered here needs to be solved numerically. We start with an initial

guess for the electrostatic potential and use a standard finite difference technique to approximate

its gradients. We then use an iterative method7 and perform several hundred iterations until the
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solution has relaxed.

We solve the differential equation using Neumann boundary conditions at r = 0

dV (r)

dr

∣∣∣∣
r=0

= 0, (9)

and at the wall r = rwall = 15 Å

dV (r)

dr

∣∣∣∣
r=rwall

= − σS
ϵ0ϵw

, (10)

where σS is the surface charge density. The first condition is required due to the symmetry of the

system with respect to its center, whereas the second boundary condition is related to an integral

of the charge density in the system. The boundary conditions are independent of the polarization

term, since the integral over the polarization is zero.

III. STRUCTURE OF THE CONFINED ELECTROLYTE

Figure S2 shows the profiles of every species of the confined electrolyte in the four nanotubes

considered. The maximum density of the oxygen falls outside of the graphs in order to display

the data such that the ion distribution profiles are visible, as well as the locations of peaks and

troughs.

IV. CORRECTION FINITE ION SIZE

Close to a charged surface, a dense layer of counterions forms as seen in the results above. The

standard Poisson-Boltzmann equation is not able to predict layering in the concentration profile.

This is due to the fact that Poisson-Boltzmann is a mean-field approach which does not include ion-

ion correlations and does not take into account the heterogeneity of the solvent (density oscillations

close to the pore surface). The ion concentration predicted using Poisson-Boltzmann in the double

electrical layer depends on the bulk concentration and on the the surface charge density. When

the surface charge and the ion concentration are large, the predicted ion density can exceed that

of close packed ions by multiple orders of magnitude. This is a consequence of the fact that ions

are treated as point charges in the Poisson-Boltzmann equation, rather than accounting for steric

effects due to their finite size.8 The same is true for the modified Poisson-Boltzmann equation

that we have solved in the paper. We have accounted for the fact that the dielectric constant of

the solvent is not homogeneous and we added an external potential term to account for various

interaction forces. However, our modified equation does not take precautions to limit the maximum

ion concentration.

There have been many attempts over the years to include corrections to the Poisson-Boltzmann

equution to account for ions sizes. Many of these studies derived a correction term using density

functional theory (DFT)9,10 or variational methods11–13 As mentioned in Section 3.1.2, DFT and

PB both suffer from limitations in their ability to predict phenomena that occur on the molecular
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ρ
(r

)[
Å
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FIG. S2: (color online) Density profiles for each of the atom types present in the aqueous electrolyte solution:

O (blue dashed line), H1 (green full line), H2 (magenta dash-dotted line), Na (red dashed line), and Cl (black

full line). The figure shows two different surface charge strengths (-0.9 e/nm
2
on the left and -1.8 e/nm

2
on

the right) and two different distributions of the surface charge (diffuse on top and local on bottom).

scale. Our intention here is not to overcome such challenges. We merely try to see how reasonably

simple models are able to reproduce the results of our more sophisticated simulations. We add the

simplest correction to account for the finite ion size and show its influence on the predicted ion

concentration profile. We follow the pioneering work of Bikerman14 who suggested the following

corrected charge distribution to account for the finite volume fraction taken up by the ions:

ρ±(r) =
ρ0 exp (∓βeV (r))

1 + ρ0
ρmax
+

(exp(−βeV (r))− 1) + ρ0
ρmax
−

(exp(βeV (r))− 1)
, (11)

where the maximum (closely packed) cation and anion concentration, ρmax
+ and ρmax

− , depends on

the volume of the ions, which is not uniquely defined. We have chosen to use the radius of the

hydration shell around sodium and chloride ions in a bulk solution (r = 0.32 nm for sodium and

r = 0.38 nm for chloride, data not shown here), these radii are larger than the Lennard-Jones radius

of the ions so that the influence of the correction term is expected to be larger. The correction

term in Eq. (11) was presented in 1942 in a paper that later got forgotten about. Subsequently, it

was independently introduced by other authors as discussed in Ref. 15.

We combine the correction term shown in Eq. 11 with the full polarization method as presented

above, including the addition of the external energy term added to the Boltzmann distribution.

Figure S3 shows the full polarization model (FP) as presented above, with and without the steric
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FIG. S3: The full polarisation model (FP) with and without the steric correction term. The MD data is

shown for comparison. (a) shows the case with the diffuse surface charge distribution, whereas (b) shows

the case in which the surface charge is distributed over a subset of the atoms of the carbon nanotube.

correction term. The effect of the correction term on the maximum ion concentration is visible in

the magnitude of the maximum charge density. On the other hand, the location of the peak has

remained unchanged. Note that the concentration profiles in Figure S2 imply that the dense layer

of cations is not surrounded by water molecules. Thus, the radii that we use in our correction term

lead to a maximum allowed ion concentration that is smaller than that which would be possible

in the simulation, so that we might be slightly overcorrecting the shortcoming of the traditional

Poisson-Boltzmann equation. A more accurate quantitative comparison between the molecular

dynamics data and the a modified Poisson-Boltzmann treatment would require a detailed study of

the correction terms and corresponding parameter values appropriate for the simulation system.
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