Preferential Adsorption in Mixed Electrolytes Confined by Charged Amorphous Silica

Max F. Döpke,† Johannes Lützenkirchen,‡ Othonas A. Moultos,‡ Bertrand Siboulet,§ Jean-François Dufrèche,∥ Johan T. Padding,‡ and Remco Hartkamp‡,†

†Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
‡Institut für Nukleare Entsorgung, Karlsruher Institut für Technologie, P.O. Box 3640, 76021 Karlsruhe, Germany
§Institut de Chimie Séparative de Marcoule ICSM, UMR 5257 CEA, CNRS, ENSCM, Université Montpellier, Bâtiment 426, F-30207 Bagnols-sur-Cèze, France

ABSTRACT: Preferential ion adsorption in mixed electrolytes plays a crucial role in many practical applications, such as ion sensing and separation and in colloid science. Using all-atom molecular dynamics simulations of aqueous NaCl, CaCl₂, and NaCl–CaCl₂ solutions confined by charged amorphous silica, we show that Na⁺ ions can adsorb preferentially over Ca²⁺ ions, depending on the surface structure. We propose that this occurs when the local surface structure sterically hinders the first hydration shell of the Ca²⁺ ion. Introducing a protrusion metric as a function of protrusion of deprotonated silanols, ion-specificity is successfully predicted on isolated, vicinal, and geminal silanols alike, provided that no other deprotonated silanols are found nearby. Furthermore, we introduce a new strategy to analyze the results as a function of distance from the surface. This approach effectively removes surface roughness effects allowing for direct comparison with classical electric double layer theory and distinction of specifically adsorbed ions and electrostatically adsorbed ions.

1. INTRODUCTION

Most fluids in nature are complex aqueous solutions containing multiple electrolytes, possibly in combination with other organic and inorganic compounds. The nanoscale properties of these mixtures at fluid–solid interfaces can be exploited for applications such as soil analysis, ion separation, and water purification.¹–³ Silica surfaces are among the most widely studied, due to their omnipresence in nature, their bimodal chemical character,⁴ and their use in a wide range of applications,⁵–⁷ including catalysis⁸ and ion sensing.⁹–¹⁰

Oxide surfaces in contact with aqueous solutions assume an electric charge as a result of protonation and deprotonation of ionizable groups.¹¹ The silica surface is negatively charged above the point of zero charge (pHₚzc ≈ 2–3),¹² attracting cations whilst repelling anions, forming a so-called electrical double layer (EDL). The exact distribution and movement of ions and solvent molecules in the EDL determine, for example, transport along the surface and charge storage at the surface. However, no single experimental technique can unambiguously measure the three-dimensional distribution, orientation, and motion of molecules constituting the fluid. In theory, the full picture could be constructed by combining the partial information inferred from multiple techniques, but it is difficult to replicate identical environmental conditions and samples in different experimental setups. Moreover, various techniques (e.g., atomic force microscopy, titration, and electrokinetic techniques) rely on fitting measurement data to EDL models (e.g., Gouy–Chapman–Stern–Graehme¹³ shown in Figure 1) to infer quantities that cannot be directly measured. Such models are based on a priori assumptions, such as that the solid surface is flat and homogeneous, fluid transport coefficients are constant in space, and the Stern and diffuse layers are distinct. These assumptions may be suitable only under certain idealized conditions, thus limiting the accuracy and interpretation of inferred quantities for most systems of interest.¹⁴

A bottom-up approach, such as molecular dynamics (MD) simulation, can provide detailed insight into molecular structure and dynamics at the nanoscale. Various EDL properties can be directly and locally calculated from the position and motion of atoms, without the need for an EDL model to infer information. As such, molecular simulations offer an appealing alternative approach to gain detailed insight into EDL properties. Furthermore, insight from MD...
surfaces, with the Stern and di
through the nuclei of solvent-separated ion pairs (SSIP), whereas an
Stern layer is delimited by the outer Helmholtz plane (OHP), passing
solution can severely impact EDL properties. This can occur,
adsorption follows a reversed Hofmeister series, Na+ < K+ <
hydration radius. Later, using the McMillan
ionic radius, but may in fact better be seen in terms of the
of mean force (PMF), Hocine et al.28 calculated the binding
stronger binding energy for Li+, and correspondingly a much
al.23,24 found that charged amorphous silica nanopores show
vibration of surface atoms, which can in
make use of rigid surfaces, limiting mobility induced by the
properties as well as slip along a surface.33 The working fluid in
most MD simulation studies has been an aqueous solution of
simple, monovalent electrolytes, such as NaCl or KCl, whereas
most solutions in nature and industry contain a mix of
electrolytes. Experimentally,10,34,35 it has been shown that
adding even a small amount of different ions to an electrolyte
solution can severely impact EDL properties. This can occur,
for example, if the added electrolytes show preferential
adsorption or if they severely affect the hydrogen bond
network of the solvent at the interface. In particular, the
addition of multivalent ions to a predominantly monovalent
solution can strongly reduce the efficiency of reverse
electrodialysis36 and can invert the direction of electrokinetic
flow.35

The first fully atomistic MD simulations of electrolyte
mixtures on siliceous surfaces were carried out by Bourg and
Sposito3 in 2011, who investigated NaCl–CaCl2 mixtures on a
rigid smectite surface and found that Na+ and Ca2+ ions
coexist in the Stern layer, with no clear preferential adsorption.
In similar MD simulations on rigid mica surfaces, however,
preferential adsorption of K+ over Rb+ and Mg2+ was found.37
Cavities in which K+ ions could adsorb were not accessible to
Rb+ and Mg2+ ions, which have larger hydration radii. To our
knowledge, only one MD study has considered mixed
electrolytes on amorphous silica. Prakash et al.30 evaluated
electro-osmotic flow on a rigid amorphous silica surface at
varying compositions of NaCl–MgCl2 solutions, stating that
Na+ preferentially adsorbs over Mg2+. However, the balance
between adsorption energy and hydration energy was not
considered. Furthermore, we argue that the closer proximity of
Na+ ions does not demonstrate preferential adsorption, but
rather is a consequence of its smaller hydration radius.
Conversely, a recent primitive model Monte Carlo study
suggested that divalent ions adsorb preferentially over
monovalent ions when discrete charges are present on a model
surface.38 A comprehensive study of ion adsorption with
mixed electrolytes on realistic amorphous silica surfaces is
lacking.

In this article, we provide one of the first studies of ion
adsorption from mixed electrolytes confined by flexible
charged amorphous silica. Adsorption of ions in single and
mixed electrolytes is compared by analyzing the distribution of
ions near a charged silica surface. Specifically, ions are classified
based on their adsorption, forming a contact ion pair (CIP) or
solvent-separated ion pair (SSIP) with the surface (see Figure
1), to assess the impact of adsorption type on the EDL
structure. This classification is analogous to inner- and outer-
sphere complex used by, for example, Bourg et al.3
Furthermore, the strong influence of the surface roughness on
the EDL structure is illustrated by computing for each ion the
distance to the nearest surface atom. Finally, we provide
selectivity maps for our system, and relate the observed
selectivities to the structural characteristics of the surface,
allowing us to devise a protrusion metric (PM) based on steric
properties, which is successfully used to predict ion-specificity.

The remainder of this article is organized as follows: the
simulation set-up is described in Section 2. The results are
given in Section 3 discussing adsorption of ions in single (one
compound) and mixed (multiple compounds) electrolytes.
Conclusions are presented in Section 4.

2. METHODS
A block of 5 nm × 5 nm × 5 nm amorphous silica was created
by annealing and quenching β-cristobalite using a modified van
Beest–Kramer–van Santen potential39–41 described in Section
S2.1 of the Supporting Information (SI). In summary, an
annealing temperature of 4000 K and cooling rate of 2.5 K/ps
were used. The density of the amorphous silica was fixed to 2.2
g/cm³ by performing the simulations in the NVT ensemble

Figure 1. Gouy–Chapman–Stern–Graham EDL model on smooth
surfaces, with the Stern and diffuse layer, and the bulk region. The
Stern layer is delimited by the outer Helmholtz plane (OHP), passing
through the nuclei of solvent-separated ion pairs (SSIP), whereas an
inner Helmholtz plane (IHP) passes through contact ion pairs (CIP).
Ions beyond the OHP are free ions (Fl).
Amorphous silica characterization is further discussed in Section S3 in the SI.

A channel configuration was generated by cutting the amorphous silica block and separating the two resulting slabs (Figure 2). Subsequently, undercoordinated silicon and uncoordinated oxygen atoms were removed. Undercoordinated oxygen atoms were protonated, resulting in a silanol (SiOH) density of 6.5 SiOH/nm². The silanol density was reduced to 5 SiOH/nm² (close to the experimental value) by condensation of silanols. Condensation of vicinal silanol pairs was avoided to ensure that no strained two-membered siloxane rings were formed. The remaining surface groups consisted of 15% isolated, 50% vicinal, and 35% geminal silanols, in line with other studies of amorphous silica (see Figure 3 for a representation of the silanol types). On either wall, 16 SiOH (g/mL) of NaCl, CaCl₂

<table>
<thead>
<tr>
<th>name</th>
<th>Cl⁻</th>
<th>Na⁺</th>
<th>Ca²⁺</th>
<th>density (g/mL)</th>
<th>NaCl</th>
<th>CaCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1Na</td>
<td>6</td>
<td>38</td>
<td></td>
<td>1.001(4)</td>
<td>0.16(1)</td>
<td></td>
</tr>
<tr>
<td>0.3Na</td>
<td>19</td>
<td>51</td>
<td></td>
<td>1.006(5)</td>
<td>0.35(1)</td>
<td></td>
</tr>
<tr>
<td>0.6Na</td>
<td>38</td>
<td>70</td>
<td></td>
<td>1.019(4)</td>
<td>0.67(1)</td>
<td></td>
</tr>
<tr>
<td>0.9Na</td>
<td>57</td>
<td>89</td>
<td></td>
<td>1.029(5)</td>
<td>0.91(2)</td>
<td></td>
</tr>
<tr>
<td>0.15Ca</td>
<td>18</td>
<td>25</td>
<td></td>
<td>0.996(5)</td>
<td>0.10(1)</td>
<td></td>
</tr>
<tr>
<td>0.3Ca</td>
<td>38</td>
<td>35</td>
<td></td>
<td>1.011(5)</td>
<td>0.27(1)</td>
<td></td>
</tr>
<tr>
<td>0.3Na0.15Ca</td>
<td>38</td>
<td>18</td>
<td></td>
<td>1.014(5)</td>
<td>0.32(2)</td>
<td></td>
</tr>
<tr>
<td>0.3Na0.3Ca</td>
<td>56</td>
<td>34</td>
<td></td>
<td>1.033(6)</td>
<td>0.40(2)</td>
<td></td>
</tr>
</tbody>
</table>

The excess of counterions can be calculated from the difference between anions and cations forming a molecule.

equivalent to 1 bar by moving the walls toward each other for 10 ns, resulting in the channel configuration shown in Figure 2 with a width of approximately 4.2 nm. The electrolyte compositions used in this study are provided in Table 1, with molarities in the center of the channel computed after adjusting the fluid.

The channel simulations were performed in the NVT ensemble with periodic boundary conditions, removing interactions across the z boundary, with a time step of 1 fs. The Nose–Hoover thermostat was used to control the temperature with a damping factor of 100 fs. Long-range electrostatic interactions were computed with the particle–particle–particle–mesh method with a relative precision of 10⁻⁴. Cut-off distances of 12 and 8.5 Å were used for Lennard-Jones (LJ) and Coulombic interactions, respectively. The Lorentz–Berthelot mixing rules were used to parametrize LJ interactions between dissimilar particles. The interface force field (IFF) parametrization from Emami et al. was used for silica, TIP4P/2005 for water, and Joung and Cheatham and Mamakulov et al. for ions. An overview of the force field parameters and functional forms is provided in Section S2.2 in the SI. The IFF has been shown to provide physically and chemically very consistent parameters compared to other force fields that are commonly used to model silica, such as clayFF. Furthermore, flexible silica walls can be easily simulated with the IFF due to the presence of bond and angle parameters. Despite IFF being parametrized together with TIP3P and SPC, TIP4P/2005 was chosen for water due to the fact that this model more accurately reproduces a range of physical and thermodynamic properties. Oxygen–hydrogen (OH) bond lengths and HOH angles were constrained with the SHAKE algorithm. All simulations in this study were performed with the large-scale atomic/molecular massively parallel simulator (LAMMPS) package.

Two independent simulations of 35 ns were performed for each system given in Table 1. The last 25 ns were used to gather statistics at 5 ps intervals. An additional simulation of 122 ns was performed for the 0.3Na0.3Ca system to study ion selectivity at the surface. Runs of 11 ns were alternated with runs of 10 ps with charges switched to qNa = −0.5, qCa = −0.5 and qCl = +1.116. This modification in ionic charges was found to be sufficient to quickly desorb the adsorbed ions, such that an independent configuration could be obtained. This process was repeated 11 times, gathering statistics throughout the last 1

![Figure 2](image.png)
Figure 2. Channel configuration for simulations. Silica walls are separated roughly 4.2 nm with fluid in between at a density of ≈1 g/cm³. The left inset shows Na⁺ adsorption with part of the hydration shell penetrating into the wall. The right inset shows adsorption of a partially hydrated Ca²⁺ ion.

![Figure 3](image.png)
Figure 3. Silanol classification for isolated (red), vicinal (green), and geminal (blue) silanols. In yellow is shown how the protrusion metric (PM) is computed considering surface atoms within 4.6 Å, of zCl−.

Table 1. Electrolyte Compositions Used in This Study with Final Densities and Molarities at the Center of the Channel in a 4 Å bin

<table>
<thead>
<tr>
<th>number of ions</th>
<th>density (g/mL)</th>
<th>molarity (mol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Cl⁻</td>
<td>Na⁺</td>
</tr>
<tr>
<td>0.1Na</td>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>0.3Na</td>
<td>19</td>
<td>51</td>
</tr>
<tr>
<td>0.6Na</td>
<td>38</td>
<td>70</td>
</tr>
<tr>
<td>0.9Na</td>
<td>57</td>
<td>89</td>
</tr>
<tr>
<td>0.15Ca</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>0.3Ca</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>0.3Na0.15Ca</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>0.3Na0.3Ca</td>
<td>56</td>
<td>34</td>
</tr>
</tbody>
</table>
Figure 4. Number density profiles (a, b) and screening function (c, d) for single NaCl and CaCl₂ electrolytes as a function of z, normal to the surface (a, c), and d, distance to the nearest surface atom (Si, O, or H) (b, d). The colors in subfigures (a) and (b) indicate the electrolyte solution; NaCl (red) or CaCl₂ (blue). The line type indicates the ion type; Na⁺ (−−−−−), Ca²⁺ (−−−−−−), and Cl⁻ (−−−−−). In subfigures (a) and (c), z = 0 is the average z-coordinate of all surface oxygen atoms. The shaded areas in all figures represent the uncertainty using 1 standard deviation (50% confidence interval). Density profiles of additional electrolyte compositions are provided in the SI.

3. RESULTS

In this section, the adsorption of ions in single and mixed electrolytes is evaluated. First, single electrolyte results are discussed, followed by a comparison with mixed systems. The section is concluded by evaluating ion-specificity of charged surface sites.

3.1. Single Electrolytes. Figure 4a shows the symmetrized cation density (top) and anion density (bottom) near the charged silica surface as a function of z, the coordinate normal to the surface. Symmetrizing of density profiles is briefly discussed in Section S5 in the SI. A dense layer of Na⁺ and Ca²⁺ is found near the surface, while the adsorbed ions forming CIPs (dashed lines). Ions forming CIPs plus those forming SSIPs make up the Stern layer, which here is found to have a thickness of approximately 8 Å, in line with experimental estimates, 6–10 Å.62 CIPs are formed when water molecules in the first hydration shell of the ion are replaced by a surface atom (Si, O, or H), and SSIPs are formed when this occurs in the second hydration shell. The first and second hydration shells are commonly delimitated by the first and second minima in the ion–water radial distribution function (rdf), respectively. The properties of the first hydration shell can be used to explain why Na⁺ ions are found closer to the surface than Ca²⁺ ions. Let us consider the first maximum of the ion–water rdf to compute the ion hydration density (H₂O/Å²). For TIP4P/2005, the maxima were found to be at 2.375 and 2.5 Å (see Hartkamp and Coasne63 and Figure S2 in the SI), giving a hydration density of 0.0846 and 0.102 H₂O/Å², with six and eight water molecules in the first hydration shell, for Na⁺ and Ca²⁺, respectively. This indicates that Na⁺ ions have a less tight hydration shell (e.g., fewer water molecules per hydration shell surface area) than Ca²⁺ ions. This allows water molecules to shift within the hydration shell of Na⁺ ions, enabling these to move closer to the surface than Ca²⁺ ions.63 Consequently, adsorbed Ca²⁺ ions display a larger change in coordination number, ΔCN, than adsorbed Na⁺ ions, as discussed in more detail in Section 3.3.

The difference in the distance from the surface for different ions is not accounted for in classical EDL theory. In theory, different ions would need to be assigned their own electrostatic planes,64 the inner Helmholtz plane (IHP) and the outer Helmholtz plane (OHP) (see Figure 1), defined as passing through the centers of CIP and SSIP, respectively.65 This, however, proves to be very elaborate for multicomponent systems. Furthermore, even a root-mean-squared (rms) surface roughness of 1.1 Å, (experimentally reported values vary from 0.2 up to several nanometers),66 obtained from the rms of the CIP z-position, can be shown to severely impact the suitability of EDL theory. In Figure 4a, no distinct planes can be found for any of the ionic species. Instead, the figure shows overlapping regions in which CIP and SSIP coexist. Density profiles as a function of z strongly depend on the surface roughness, causing the density profiles to be highly specific to the characteristics of the surface. This specificity is also responsible for the large error margins near the surface. Part of this specificity can be eliminated when considering the density as a function of the distance, d, to the nearest wall atom (Si, O, or H). This measure provides an effective means to decouple the effect of surface roughness from ion specific properties such as the adsorption state, which can more easily be identified in this way. Similarly, one could say that the density as a function of d closely resembles the density profile as it would occur on a perfectly smooth surface with localized surface sites. Indeed, the density profiles in Figure 4b are found to closely resemble those found for smooth surfaces (see, for example, refs 67, 68), and provide a clear distinction of atom layers corresponding to CIP and SSIP by the minima at d ≈ 3
A. Furthermore, this representation is in line with the classical definition of IHP and OHP for each ionic species, as passing through the centers of CIP and SSIP. Different from Figure 4a, in Figure 4b, Na\(^+\) ions and Ca\(^{2+}\) ions are found at similar distances from the surface. Additionally, the presence of Cl\(^-\) ions forming CIP is highlighted in this representation, in line with some experimental observations.\(^{60}\) In the inset of Figure 4b, a strict distinction of CIP and SSIP for Ca\(^{2+}\) ions is observed, whereas Na\(^+\) ions are also found in an adsorption state that is neither strictly defined as CIP nor SSIP. This can be interpreted as Ca\(^{2+}\) ions having distinct preferred distances to form CIP and SSIP, suggesting a clear energy barrier between CIP and SSIP. On the other hand, Na\(^+\) ions can also occupy adsorption states between CIP and SSIP, indicating a lower free energy barrier between these adsorption states. Finally, the local excess of Cl\(^-\) ions, immediately following the SSIP region in the CaCl\(_2\) solution, indicates the occurrence of overscreening or charge inversion (CI), discussed in more detail below.

We define a screening function \(\Gamma(\chi)\) to indicate the screening of the surface charge by the ions up to \(\chi\) as the sum of bare surface charge \(\sigma_0\) and the integral over the ion number density \(\rho_i\) multiplied by the ion valency \(Z_i\) for ion type \(i\) as

\[
\Gamma(\chi) = \sigma_0 + \int_{\min(d)}^{\chi} \sum_i \rho_i(\chi') Z_i \, d\chi'
\]

with \(\chi\) being a placeholder for \(z\) or \(d\). Note that \(\Gamma(d)\) differs from a radial distribution function because only the distance to the nearest surface atom is considered for each ion. A surface is considered fully screened when the screening function approaches zero. Figure 4c,d shows \(\Gamma\) as a function of \(z\) (c) and \(d\) (d), obtained by applying eq 1 to the ion density profiles. As the ion concentration increases, the diffuse region becomes more compact due to a shorter Debye length. Consequently, the EDL thickness is reduced. This behavior has also been observed in previous MD simulations\(^{10}\) and X-ray photoelectron spectroscopy.\(^{62}\) For NaCl, the contributions of CIP \((d \leq 2.75)\) and SSIP \((2.75 < d \leq 5.5)\), both increase at increasing concentration, whilst for CaCl\(_2\), the contributions of CIP \((d \leq 2.75)\) and SSIP \((2.75 < d \leq 5.5)\), only the CIP contribution increases. In fact, for NaCl, we can find a linear trend of 0.03 \(\times \sigma_0\) increase in screening for each 0.3 M increase (see also Figure 5). The screening function for the 0.9Na and both CaCl\(_2\) systems exceeds zero, indicating overscreening or CI. This phenomenon occurs when an excess of counterions is attracted to the surface, changing the sign of \(\Gamma\). For NaCl, CIP and SSIP appear to contribute equally to CI. On the other hand, for CaCl\(_2\), CIP contributes to a greater extent to CI than SSIP.

van der Heyden et al.\(^{35}\) inferred the effective surface charge from streaming current measurements as \(\sigma^* = \sigma_0 + \rho_0 \sum Z_i \rho_i \sigma_0\), where the Stern layer is considered to be composed of immobile ions yielding \(\sigma^* = \Gamma(d = d_{\text{immobile}})\), with \(d_{\text{immobile}}\) representing the distance from the surface up to where ions are considered immobile. The bare surface charge density of fused silica at pH = 7.5 was estimated as \(-150\) mC/m\(^2\), and the authors interpreted their measurements assuming no-slip Poiseuille flow and Boltzmann charge distribution. Their result is included in Figure 5, showing a sign reversal at 0.4 M CaCl\(_2\). This method of determining CI only considers immobile ions, which are often considered to include the entire Stern layer, e.g., CIP and SSIP. Relative to the results of van der Heyden et al., our MD results overpredict the occurrence of CI for CaCl\(_2\).

The effective surface charge estimated from electrokinetic experiments can deviate from what would be observed in MD, due to multiple factors: first, the simulation force field is not optimized for dynamic properties; second, the effective surface charge is inferred from streaming current measurements using multiple assumptions that may be inaccurate. Furthermore, the effect of fluidic transport on charge distribution is debated. Some authors\(^{70,71}\) have claimed that fluidic transport can alter the charge distribution, which would result in a nonlinear electrokinetic response. In contrast, our previous work\(^{72}\) has shown linear electrokinetic response in electro-osmotic flow with electric fields up to \(25 \times 10^6\) V/m (O(1-10^5) V/m is characteristic for electrokinetic experiments)\(^{73,74}\). Consequently, the relationship between CI and electro-osmotic flow reversal may not be unique.

In many numerical studies, the occurrence of CI is underpredicted due to the use of uniformly charged model surfaces. These surfaces have been shown to predict less CIP formation, which is crucial for accurate predictions of CI\(^{31,38,67,75}\). In fact, CI has been argued to be a discrete phenomenon which strongly depends on specific ion adsorption.\(^{38,75}\) For example, on a discretely charged wall, CI occurs locally when a higher valency ion or multiple monovalent ions adsorb to a SiO\(^-\). For monovalent ions, this behavior has been observed in previous MD simulations\(^{31}\) and is confirmed by our results (see Table S1 in the SI). On the other hand, various numerical studies using discrete charges have overpredicted the occurrence of CI due to the force fields used.\(^{72,28,76,77}\) For example, the silica parametrization of clayFF\(^{56,57}\) contains neither bond nor angle parameters, requiring higher partial charges, which can lead to unphysically strong electrostatic interactions. Furthermore, we note that the Ca\(^{2+}\) parametrization used in this study has some known deficiencies,\(^{78}\) but no better parameters exist at the present time.

3.2. Mixed Electrolytes

By combining the ions from single 0.3Na with 0.15Ca or 0.3Ca systems in the mixed 0.3Na0.15Ca and 0.3Na0.3Ca systems (see Table 1), the total ionic concentration increases. This reduces the EDL thickness, in part due to a shorter Debye length. However, it is not obvious which ions would adsorb and how these distribute within the Stern layer. These matters will be investigated in the following.

Figure 6 includes the density profiles and screening functions for the single 0.3Na, 0.3Ca, and the mixed 0.3Na0.3Ca systems. Figure 6a shows how Na\(^+\) adsorption...
(CIP + SSIP) in the mixture is reduced by more than 50% compared to the single electrolyte solution, while \(\text{Ca}^{2+}\) adsorption is only reduced by 30%. Stronger Coulombic attraction is expected for \(\text{Ca}^{2+}\) ions than for \(\text{Na}^+\) ions, based on the higher partial charges of the former. Despite this, we find \(\text{Na}^+\) ions adsorb closest to the surface. When the surface structure near dangling oxygen provides steric hindrance to the hydrated ion, additional water molecules need to be expelled from or shifted within the first hydration shell of the ion. Since \(\text{Na}^+\) ions have a less tight hydration shell than \(\text{Ca}^{2+}\) ions (see the discussion above), these can shift water molecules around more easily than \(\text{Ca}^{2+}\) ions and hence adsorb with fewer water molecules being rejected from its hydration shell ions as shown in Figure 8b. The results of this preferential adsorption are shown in the insets in Figure 2. On the left, an adsorbed \(\text{Na}^+\) ion is shown to penetrate the surface with part of its hydration shell, whilst on the right, an adsorbed hydrated \(\text{Ca}^{2+}\) ion is shown to remain superficial. This preferential adsorption behavior between \(\text{Na}^+\) and \(\text{Ca}^{2+}\) leads to a reduction in CIP formation for \(\text{Ca}^{2+}\) in mixed compared to single electrolytes, as shown in Figure 6ab. Consequently, also the CIP contribution toward surface screening is reduced from 129.3 mC/m² in the 0.3Na0.15Ca system as shown in Figure 6d. In terms of electrolyte solution; \(\text{NaCl}\) (red), \(\text{CaCl}_2\) (blue), or \(\text{NaCl} + \text{CaCl}_2\) (green). The line type indicates the ion type; \(\text{Na}^+\) (solid), \(\text{Ca}^{2+}\) (dashed), and \(\text{Cl}^{-}\) (dotted). In subfigures (a) and (c), \(z = 0\) is the average location of all surface oxygen atoms. The shaded area in all figures represents the uncertainty using 1 standard deviation (50% confidence interval). Density profiles of additional electrolyte compositions are provided in the SI.

The above behavior of preferential adsorption and CI reduction is consistent with experiments that suggested a reduction of multivalent ion adsorption upon addition of monovalent ions.35,79–82 For example, van der Heyden et al.35 measured a reduction and even sign reversal of current in streaming current experiments for a multivalent ionic solution by addition of varying amounts of monovalent ions. This was interpreted as the result of competitive effects between ions in the Stern layer. In line with these experiments, we observe surface structure-induced competitive effects in the formation of CI and SSIP.

3.3. Surface-Induced Ion-Specificity

An additional simulation for the 0.3Na0.3Ca system was carried out as specified in the Section 2. Ions were repeatedly forced to desorb and subsequently equilibrated to adsorb, obtaining 11 uncorrelated sets of adsorbed ions. Averaging over these results, it was found that some dangling oxygens showed preferential adsorption of \(\text{Ca}^{2+}\) ions and others of \(\text{Na}^+\) ions. Figure 7 shows the preferential adsorption found for the left and right walls. The color scale intensity goes from \(\text{Ca}^{2+}\) adsorbed in all 11 independent results (blue) to \(\text{Na}^+\) adsorbed in all 11 independent results (red). The highest rates of preferential adsorption observed in our simulations were 64% for \(\text{Ca}^{2+}\) (7/11) and 64% for \(\text{Na}^+\) (7/11). Roman numbers I–VI in the figure indicate regions that are specifically discussed below.

On the left channel wall in Figure 7, it is seen that most dangling oxygens display a preference for \(\text{Na}^+\) ions. On the right channel wall, on the other hand, more preference for \(\text{Ca}^{2+}\) ions is seen. Single deprotonated silanols did not show consistent preferential adsorption. Clusters of two deprotonated silanols, on the other hand, displayed preferential adsorption for \(\text{Na}^+\) ions as shown in II–V and the cluster of overall surface screening and CI when adding monovalent ions to a divalent solution.
three showed preferential adsorption of Ca2+ ions as shown in VI.

Upon visual inspection in VMD, it was found that dangling oxygens displaying preferential adsorption of Na+ ions were frequently submerged into the surface. Furthermore, ions adsorbed to submerged dangling oxygens had a considerably reduced number of water molecules within the first hydration shell (see Table S1 in the SI). Consequently, we argue that steric hindrances to the ion hydration shell exist. This hypothesis was confirmed by introducing a protrusion metric (PM)

\[
PM = \frac{z_{\text{sur}} - z_{O^\text{-}}}{z_{O^\text{-}}}
\]

measuring the protrusion of dangling oxygens, as indicated in Figure 5, as a function of their position \(z_{O^\text{-}}\) with respect to the average \(z\)-position of surrounding surface atoms \(z_{\text{sur}} = 1/N \sum z_i\) within 4.6 Å. A high PM value indicates that a dangling oxygen protrudes from the surface, whereas a low PM value indicates a submerged dangling oxygen. Attempts were made to include also the effect of silanol orientation but failed to produce better results.

The PM is introduced in Figure 7, showing that at low PM, Na+ is preferentially adsorbed and at high PM, Ca2+ is preferentially adsorbed. Exceptions to this finding are indicated with roman numbers. Region I is found without any ion adsorbed due to hydrogen-bonds formed by these dangling oxygens with neighboring silanols. In cases II–VI, on the other hand, multiple dangling oxygens were found next to each other forming clusters, with ions frequently adsorbed to several dangling oxygens simultaneously. Consequently, for these clusters a combined PM, would be indicative for ion-specificity. However, additional factors not included here could play a role in the ion-specificity of clusters. In particular, the following considerations are thought to be relevant: determination of which dangling oxygen is dominant, the distance between dangling oxygens and electrostatic interactions. For example, clusters II, III, IV, and V show similar average PM values, but clusters II, III, and IV show strong preference for Na+ ions while cluster V shows only a slight preference toward Na+ ions. Furthermore, cluster VI displays a preference for Ca2+ ions despite having a low combined PM value of 0.39/100. In conclusion, for deprotonated silanol clusters, the ion-specificity cannot be explained using only geometric features.

Figure 8 shows that the remaining dangling oxygens (excluding those within I–VI) follow the trend expected by the PM. In Figure 8a, deprotonated silanols that have no other dangling oxygen nearby (henceforth named single) are displayed in blue and those forming clusters (II–VI in Figure 7) in red and yellow. Clusters are shown separately because a different trend is expected for clusters of dangling oxygens compared to single dangling oxygens due to the neglecting of electrostatic contributions by the PM. Preferential Na+ adsorption is observed at low PM and preferential Ca2+ adsorption at large PM. A least squares regression for single dangling oxygens is shown in blue showing a clear trend despite the large spread. At increasing PM, preferential adsorption shifts from Na+ to Ca2+. For clusters of dangling oxygens, no solid conclusions can be drawn due to the fact that only five data points exist and the results are not consistent with the PM. For single dangling oxygens, however, a clear trend is observed despite the large spread. At increasing PM, preferential adsorption shifts from Na+ to Ca2+.

We suggest that the trend observed in Figure 8a is related to the number of water molecules within the first hydration shell of adsorbed ions. In fact, in Figure 8b it is observed that the number of water molecules expelled from the first hydration shell of adsorbed ions increases at reducing PM. We argue this to be due to steric hindrances to the first hydration shell of the ion by the structure surrounding dangling oxygen. This hindrance can be overcome by either expelling additional water molecules from the first hydration shell or shifting water molecules within the hydration shell. From Figure 8b, it is seen that consistently more water molecules are expelled from the first hydration shell of Ca2+ ions than from that of Na+ ions. Since Na+ ions have been found to have a less tight hydration

Figure 8. Ion-specificity (a) and reduction in coordination number (b) as a function of PM. Ion-specificity goes from Ca2+ preferential adsorption (−1) to Na+ preferential adsorption (1). Least squares regression is shown to highlight trends for single dangling oxygens (blue) in (a) and −ΔCN for Na+ (red) and Ca2+ (blue) ions in (b). Weighted least squares in (b) shows the trend of −ΔCN for all ions combined, weighted by ion-specificity.
shell, these preferentially adsorb at submerged dangling oxygens by shifting water molecules within their hydration shell.

Additionally, it was found that the adsorption location of Na\(^+\) ions and Ca\(^{2+}\) ions on the same dangling oxygen differs. Na\(^+\) ions are frequently found next to dangling oxygen, forming an additional bond with another surface atom or rotating around it, whilst Ca\(^{2+}\) ions are almost exclusively found on top of dangling oxygens (see Figure S3 in the SI). This difference in adsorption location can potentially have a large influence on Stern layer dynamics, as adsorbed Na\(^+\) may contribute differently to electro-osmotic or pressure driven flow than adsorbed Ca\(^{2+}\) ions. In conclusion, a combination of surface structure-induced ion-specificity and electrostatic attraction, which vary locally over the surface, is ultimately responsible for selectivity.

4. CONCLUSIONS

We have presented a study of ion adsorption, comparing single and mixed electrolytes confined by charged amorphous silica. Ion layering in the Stern layer was evaluated by classifying ions as forming surface CIP and SSIP based on their distance to a given adsorption site. Taking this idea one step further, density profiling was done in line with classical EDL theory. This approach can potentially be used together with EDL models such as the Gouy–Chapman–Stern–Grahame model to improve predictions of the surface or shear plane potentials. Upon analyzing CIP formation per dangling oxygen, we found surface structure-induced ion-specificity. Although Ca\(^{2+}\) ions undergo stronger Coulombic attraction to the negatively charged surface than Na\(^+\) ions, the microstructure of certain adsorption sites may exhibit preference toward Na\(^+\) adsorption by impeding Ca\(^{2+}\) ions, which have a tighter hydration shell, from adsorbing. Using this insight, we suggested a simple protrusion metric to predict ion-specificity of dangling oxygens. This metric was shown to work on single dangling oxygens, but failed when multiple dangling oxygens were found close to each other forming clusters. Additional analysis is needed to expand the understanding of the underlying mechanism of this ion-specificity and test the applicability of the protrusion metric with other electrolytes and oxide surfaces. We expect this metric to be especially successful in mixed electrolytes containing counterions of the same valency but dissimilar hydration properties.

In conclusion, surface roughness, as well as the placement of deprotonated silanol, will have a severe impact on preferential adsorption, related to the steric hindrance for ion hydration shells. This finding can be used to microengineer surfaces with selectivities for specific ions for purposes ranging from water desalination to osmotic power harvesting. Furthermore, insight into the relationship between the surface structure and preferential adsorption can help understand experimental results.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.9b02975.
The Water-Amorphous Silica Interface: Analysis of the Stern Layer

The Water-Amorphous Silica Interface: Analysis of the Stern Layer

Driven Flow of Aqueous Salt Solutions through Charged Silica

Solutions in Silica Channels.

Coupled.

Bonhomme, O.; Joly, L. Measuring Surface Charge: Why Exper-

Surface.

the Water/Amorphous Silica Interface: a Model for the Undissociated

Points of Zero Charge.

19591

Langmuir

1256

and Alkali Metal Counterion Identity.

in a 1 nm Diameter Silica Nanopore as a Function of Surface Charge

C. Molecular Dynamics Simulations of Water Structure and Diffusion

2012

2016

Thermodynamics and IR Spectroscopic Signatures.

Silica Surface: The Influence of the

Technol.

Environ. Sci.

Membrane Selection to Enhance Power Densities.

