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H I G H L I G H T S

� A multi-chain Brownian dynamics
simulation algorithm has been
developed.

� Periodic boundary conditions for pla-
nar mixed flows have been imple-
mented.

� The effect of shear rate and extension
rate on polymer size and viscosity is
examined.

� A critical value of flow mixedness
decides if flow is shear or extension
dominated.
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a b s t r a c t

Periodic boundary conditions for planar mixed flows are implemented in the context of a multi-chain
Brownian dynamics simulation algorithm. The effect of shear rate _γ , and extension rate _ϵ , on the size of
polymer chains, 〈R2

e 〉, and on the polymer contribution to viscosity, η, is examined for solutions of FENE
dumbbells at finite concentrations, with excluded volume interactions between the beads taken into
account. The influence of the mixedness parameter, χ, and flow strength, _Γ , on 〈R2

e 〉 and η, is also
examined, where χ-0 corresponds to pure shear flow, and χ-1 corresponds to pure extensional flow.
It is shown that there exists a critical value, χc, such that the flow is shear dominated for χoχc, and
extension dominated for χ4χc.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the rheological behaviour of polymer solutions
under different flow conditions has always been of great interest
to the rheology community, both from a fundamental, and a
practical point of view (Bird et al., 1987a; Larson, 1999). The most

commonly studied flows are shear and elongational flows because
of their simplicity. They have proven to be useful in understanding
many industrial processes, such as extrusion, injection molding
and sheet casting, to name but a few (Baird and Collias, 1998).
In many practical situations, however, rather than only shear or
elongational flow, a combination of these flows is often observed.
A special case is the linear combination of shear and elongational
flow, the so-called mixed flow (Fuller and Leal, 1981; Hur et al.,
2002; Woo and Shaqfeh, 2003; Dua and Cherayil, 2003; Hoffman
and Shaqfeh, 2007). While elongational flows are shear free
flows, shear flows have equal contributions from vorticity and
elongation. In mixed flows both elongational and rotational
components exist but their contributions vary, characterized by a
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mixedness parameter χ. In the limit χ-0, the flow reduces to shear
flow, while the limits χ-�1 and χ-1 correspond to pure
rotational and pure elongational flow, respectively. Experimen-
tally, mixed flows have been generated and studied using the four-
roll mill (Lee et al., 2007). While there have been relatively
few computational studies of mixed flows of dilute polymer
solutions (Hur et al., 2002; Woo and Shaqfeh, 2003; Dua and
Cherayil, 2003; Hoffman and Shaqfeh, 2007), there have been
almost no computational studies of polymer solutions at finite
concentrations undergoing mixed flow. Such flows are of signifi-
cant interest in many practical applications, particularly
in situations where there is a strong elongational component to
the deformation, such as in inkjet printing or fibre spinning (Xu et
al., 2007; Zettl et al., 2009). Consequently, obtaining a quantitative
understanding of the rheological behaviour of non-dilute polymer
solutions is not only of fundamental importance, but also vitally
important for a number of practical applications. The aim of this
paper is to develop a computational algorithm that enables the
simulation of polymer solutions at finite concentrations subjected
to planar mixed flows.

A challenging aspect of the development of an algorithm to
simulate flows of finite-concentration polymer solutions is the
implementation of appropriate periodic boundary conditions (PBCs),
arising from the need to carry out simulations for an indefinitely long
time. PBCs for planar shear flows and planar elongational flows
have been developed by Lees and Edwards (1972) and Kraynik and
Reinelt (1992), respectively, that enable computations to run indefi-
nitely in these flows. These PBCs have, for example, been used by
Bhupathiraju et al. (1996) and Todd and Daivis (1998) in none-
quilibrium molecular dynamics (NEMD) simulations. Apart from
NEMD simulations, these PBCs have also been implemented in a
Brownian dynamics (BD) simulation algorithm by Stoltz et al. (2006)
to simulate semidilute polymer solutions undergoing planar shear
and planar elongational flows. In the context of planar mixed flows,
Woo and Shaqfeh (2003) and Dua and Cherayil (2003) and Hoffman
and Shaqfeh (2007) have carried out simulations of dilute polymer
solutions using a BD algorithm. However, PBCs are not required in
single chain simulations. Hunt et al. (2010) have derived suitable
PBCs for planar mixed flows and implemented them in an NEMD
algorithm, which has recently been applied in a couple of different
contexts (Hartkamp et al., 2012, 2013).

While NEMD simulations have led to important insights into
the behaviour of polymer melts in a variety of flows (Todd, 2001;
Kröger M., 2004; Hajizadeh et al., 2014) they are not suited to
simulating the large-scale and long-time behaviour of solutions of
long polymer chains, because of the large number of degrees of
freedom involved, and because such systems typically have relaxa-
tion times that are of the order of several seconds. Basically, the
need to resolve the uninteresting motions of all the solvent
molecules for extended periods of time makes NEMD simulations
computationally expensive and inefficient. It is generally accepted
that the best approach under these circumstances is to use
mesoscopic simulation algorithms, such as the hybrid LB/MD
(Ahlrichs and Dünweg, 1999), or MPCD (Gompper et al., 2009)
algorithms, or Brownian dynamics, in which the solvent molecules
are discarded altogether and treated implicitly.

To our knowledge, mixed flow PBCs have not been implemen-
ted in the context of a BD algorithm so far. In this paper, we discuss
the implementation of PBCs for planar mixed flows in a multi-
chain BD algorithm. In particular, we adapt the PBC implementa-
tion in NEMD by Hunt et al. (2010) to the context of BD. The
development of such an algorithm will enable the simulation of
the large-scale and long-time properties of polymer solutions in
industrially relevant flows at industrially relevant concentrations.

To illustrate the capabilities of the BD algorithm developed
here, we present some preliminary results on the planar mixed

flow of non-dilute polymer solutions. Shaqfeh and coworkers (Hur
et al., 2002; Woo and Shaqfeh, 2003; Hoffman and Shaqfeh, 2007)
have shown that the mixedness parameter χ is essential to
understanding the nature of polymer behaviour in mixed flows.
For instance, χ is a key parameter in determining the existence of
the phenomenon of coil-stretch hysteresis (de Gennes, 1974;
Schroeder et al., 2003, 2004). Here, we study the influence of flow
type χ, and flow strength _Γ on the viscosity in planar mixed flows,
using the definition of viscosity introduced by Hounkonnou et al.
(1992). Additionally we show that, as in the case of dilute
solutions, there exits a critical value, χc, below which the flow is
shear dominated, while being extension dominated for χ4χc. We
find that the concentration of the polymer solution influences χc,
and consequently the nature of the flow.

The plan of the paper is as follows. Different forms of the
velocity gradient tensor for planar mixed flows are discussed in
Section 2. In Section 3 we discuss the governing equations of the
BD algorithm (Section 3.1), the implementation of PBCs in planar
mixed flows (Section 3.2), the definition of various macroscopic
properties (Section 3.3), and the validation of the BD algorithm by
comparison with known results (Section 3.4). In Section 4, the
results of simulations of FENE dumbbells are presented, and the
influence of flow strength and mixedness parameter on polymer
size and viscosity is discussed. The central conclusions of this work
are summarized in Section 5.

2. Planar mixed flows

The velocity gradient tensor for planar shear flow (PSF) in
matrix form is (Bird et al., 1987a)

ð∇vÞPSF ¼
0 0 0
_γ 0 0
0 0 0

0
B@

1
CA ð1Þ

where _γ is the shear rate. The simplicity of planar shear flows has
motivated many studies that have compared experimental obser-
vations with simulation predictions (Larson, 1999; Hur et al., 2000;
Hsieh and Larson, 2004; Schroeder et al., 2005).

The velocity gradient tensor for planar elongational flow (PEF)
is given by (Bird et al., 1987a)

ð∇vÞPEF ¼
_ϵ 0 0
0 � _ϵ 0
0 0 0

0
B@

1
CA ð2Þ

where _ϵ is the elongational rate. Planar elongational flows occur in
many industrial processes, and are generally difficult to study
using computer simulations and experimental techniques, since in
PEF, fluid elements are stretched exponentially with time in one
direction while being contracted in the perpendicular direction
(Bird et al., 1987a), leading to a very short span of time in which to
observe the phenomena of stretching.

In planar mixed flow (PMF), the velocity gradient tensor has the
following form (Fuller and Leal, 1981; Hounkonnou et al., 1992;
Hoffman and Shaqfeh, 2007; Hunt et al., 2010):

ð∇vÞPMF ¼
_ϵ 0 0
_γ � _ϵ 0
0 0 0

0
B@

1
CA ð3Þ

which is referred to as the canonical form (Hunt et al., 2010). The
expanding direction is along the x-axis and the contracting
direction is along the y-axis, with elongational field strength _ϵ,
while the shear gradient is along the y direction, with shear field
strength _γ . It follows that the expansion axis is always parallel to
the x-axis, but the contraction axis is along the direction of one of
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the eigenvectors of the velocity gradient tensor. While the form of
the velocity gradient tensor given by ð∇vÞPMF [Eq. (3)] instinctively
separates the shear and elongational flow components, it does not
permit one to easily study the variation in material behaviour as
the flow changes smoothly from pure shear to pure elongation or
vice versa.

An alternative version of the velocity gradient tensor ð∇vÞ
proposed by Fuller and Leal (1981)

ð∇vÞ ¼
0 _Γχ 0
_Γ 0 0
0 0 0

0
B@

1
CA ð4Þ

where _Γ is the characteristic strain rate, and χ (A ½�1;1�) is the
mixedness parameter (which measures the relative strength of
rotational and elongational components), is more suited to this
purpose. It can be shown that this form for ð∇vÞ reduces to PSF
when χ-0, while pure PEF is recovered in the limit χ-1. Eq. (4) is
also valid in the limit of χ-�1, which corresponds to the pure
rotational flow limit.

In their studies of PMF of dilute polymer solutions, Hoffman
and Shaqfeh (2007) have shown that Eq. (4) is equivalent to

ð∇vÞ ¼
_Γ
ffiffiffi
χ

p 0 0
_Γ ð1�χÞ � _Γ

ffiffiffi
χ

p
0

0 0 0

0
B@

1
CA ð5Þ

in a suitably rotated coordinate system, where they confine their
attention to elongation-dominated mixed flow, for which χ40.
Clearly, ð∇vÞ and ð∇vÞPMF are similar in structure. Comparing
Eqs. (3) and (5), we can express the shear rate _γ and elongational
rate _ϵ in terms of _Γ and χ as follows:

_γ ¼ _Γ ð1�χÞ ð6Þ
and

_ϵ ¼ _Γ
ffiffiffi
χ

p ð7Þ
The smooth crossover between pure planar shear and pure planar
elongational flow limits can be studied by varying χ between 0 and 1.

3. Polymer model and simulation algorithm

A linear bead-spring chain model (Bird et al., 1987b) is used to
represent polymers at the mesoscopic level, with each polymer
chain coarse-grained into a sequence of Nb beads, which act as
centres of hydrodynamic resistance, connected by Nb�1 massless
springs that represent the entropic force between adjacent beads.
A finite-concentration polymer solution is modelled as an ensem-
ble of such bead-spring chains, immersed in an incompressible
Newtonian solvent. A total of Nc chains are initially enclosed in a
cubic and periodic cell of edge length L, giving a total of N¼Nb � Nc

beads per cell at a bulk monomer concentration of c¼N/V, where
V ¼ L3 is the volume of the simulation cell.

3.1. BD simulations of flowing polymer solutions at finite
concentration

The Euler integration algorithm, in the absence of hydrody-
namic interactions, for the non-dimensional Ito stochastic differ-
ential equation governing the position vector rνðtÞ of bead ν at time
t, is (Stoltz et al., 2006; Jain et al., 2012a)

rνðtþΔtÞ ¼ rνðtÞþκ � rνðtÞþ
1
4

� �
FνðtÞ Δtþ

1ffiffiffi
2

p
� �

ΔWνðtÞ ð8Þ

The length scale lH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=H

p
and time scale λH ¼ ζ=4H (where kB

is the Boltzmann constant, T is the temperature, H is the spring

constant and ζ is the hydrodynamic friction coefficient associated
with a bead) have been used for the purpose of non-
dimensionalizing Eq. (8). The 3�3 tensor κ is equal to ð∇vÞT , with
v being the unperturbed solvent velocity. Fν incorporates all the
non-hydrodynamic forces on bead ν due to all the other beads. The
non-hydrodynamic forces in the model are composed of the spring
forces Fsprν and excluded volume interaction forces Fexvν , i.e.,
Fν ¼ Fsprν þFexvν . The components of the Gaussian noise ΔWν are
obtained from a real-valued Gaussian distribution with zero mean
and variance Δt.

The specification of the force term in Eq. (8) requires the
consideration of bonded and non-bonded interactions between
beads, with the former arising due to the presence of spring forces.
In order to model spring forces, a finitely extensible nonlinear
elastic (FENE) potential has been used. The entropic spring force
on bead ν due to adjacent beads can be expressed as Fsprν ¼
FcðQ νÞ�FcðQ ν�1Þ where FcðQ ν�1Þ is the force between the beads
ν�1 and ν, acting in the direction of the connector vector between
the two beads Q ν�1 ¼ rν�rν�1. The dimensionless FENE spring
force is given by FcðQ νÞ ¼Q ν=ð1�jQ νj2=bÞ, where b¼Hq20=kBT is
the dimensionless finite extensibility parameter, and q0 is the
dimensional maximum stretch of a spring.

In this paper we consider only excluded volume interactions as
the source of non-bonded interactions. The excluded volume
interactions are modelled using a narrow Gaussian potential
(Prakash and Öttinger, 1999; Öttinger, 1996; Prakash, 2001a),
which in terms of non-dimensional variables is given by

EðrνμÞ ¼ z⋆
1

d⋆
3

 !
exp �1

2
r2νμ

d⋆
2

( )
ð9Þ

The dimensionless parameter z⋆ is the strength of excluded
volume interactions and d⋆ is a dimensionless parameter that
measures the range of the excluded volume interaction. z⋆ is
related to the solvent quality parameter z through z⋆ ¼ z=

ffiffiffiffiffiffi
Nb

p
,

and d⋆ is related to z⋆ through d⋆ ¼ Kz⋆
1=5, where K is an arbitrary

parameter which becomes irrelevant in the long chain limit
(Prakash, 2001b; Kumar and Prakash, 2003). We have used a value
of K¼1 in all the simulation results reported here.

While the implementation of the term ½κ � rνðtÞ� in Eq. (8) is
straightforward, the major challenge is in the implementation of
appropriate periodic boundary conditions for various flows. Peri-
odic boundary conditions (PBCs) are used in simulations to mimic
real systems, enabling the computation of bulk properties by
simulating only a small number of particles. The implementation
of PBCs for planar mixed flows in the context of BD simulations is
discussed in the section below.

In order to compare BD simulation predictions with experimental
observations on polymer solutions, it is essential to include hydro-
dynamic interactions (HI) in the simulation algorithm (Prakash, 1999,
2009; Prabhakar et al., 2004; Sunthar and Prakash, 2005, 2006; Jain
et al., 2012b). We have previously discussed the development of
optimized BD algorithms with HI in the context of both dilute and
semidilute solutions (Prabhakar and Prakash, 2004; Jain et al., 2012a).
In the present instance, we have neglected HI since we want to focus
on the aspects dealing with the implementation of mixed flow PBCs.
It turns out it is sufficient to include pair-wise non-linear excluded-
volume interactions in order to invoke all the aspects of the
algorithm that are related to the implementation of PBCs in flow.
This is discussed in greater detail in Section 3.4 where we consider
the validation of the current BD algorithm.

3.2. Periodic boundary conditions for planar mixed flows

In flow simulations, PBCs require that the shape of the simula-
tion box changes with time in accordance with the flow such that
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the deformation of the simulation box follows the streamlines of
the flow. As the simulation box deforms with respect to time, there
comes a time when the box has deformed to such an extent that
the minimum spacing between any two sides of the box becomes
less than twice the inter-particle interaction range. At that point in
time, particles start to interact with themselves and the simulation
needs to be stopped. There might also be cases, such as in shear
flows, where after some time, one of the sides of the box becomes
very large resulting in numerical problems. In other words, the
deformation of the simulation box in such a manner restricts the
simulation from proceeding for long times. In fact, this issue
becomes even more serious for polymer molecules, since in this
case, relaxation times in general are quite long, and it is very
important to simulate them for sufficiently long time in order to
capture their dynamics accurately. It is consequently necessary to
perform a mapping of the simulation box such that the initial box
configuration is periodically recovered. Remapping of the box
configuration requires two conditions to be met: (i) Compatibility,
which means that the minimum lattice spacing should never be
less than twice the range of inter-particle interactions, and (ii)
Reproducibility, which means that the lattice points of a lattice
should overlap with the lattice points of the same lattice at a
different time. Remapping of the lattice in NEMD simulations of
planar shear flow was first carried out by Evans (1979) and Hansen
and Evans (1994) who modified the original sliding-brick algorithm
of Lees and Edwards (1972) to a deforming-box algorithm. Satisfying
the two conditions of compatibility and reproducibility, Kraynik and
Reinelt (1992) developed PBCs capable of being remapped, for planar
elongational flows. The Kraynik–Reinelt PBCs were first implemented
by Todd and Daivis (1998) and Baranyai and Cummings (1999) in
their planar elongational NEMD simulation algorithms. In these PBCs,
basically the lattice is started at an angle θ (the so-called magic angle)
(Kraynik and Reinelt, 1992), then deformed for a certain period of
time τp (the strain period), and then mapped back to its original state.
This process of deforming the lattice till τp and mapping back to its
original state is repeated as many times as needed to achieve
extended simulations.

Hunt et al. (2010) extended the PBCs for planar elongational
flows to planar mixed flows in their NEMD simulations for the first
time. In this paper, we adopt the reproducible periodic boundary
conditions for planar mixed flow developed by Hunt et al. (2010),
and use it in a multi-chain Brownian dynamics simulation algo-
rithm for semidilute polymer solutions. Implementation of PBCs
for planar mixed flow is similar to that for planar elongational flow
(Kraynik and Reinelt, 1992; Todd and Daivis, 1998), except for
some differences due to the presence of a rotational component.

These differences are briefly outlined below, along with the major
steps in the implementation of PBCs for PMF.

In the canonical representation, the eigenvalues of ð∇vÞPMF are
f_ϵ; � _ϵ;0g, and a possible choice of the corresponding eigenvectors
is (1, _γ=2_ϵ, 0), ð0;1;0Þ and ð0;0;1Þ. It is worth noting that the
eigenvalues of the velocity gradient tensor of the canonical PMF
are equivalent to those for PEF, where ð∇vÞPEF is already in a
diagonal form. However, the eigenvectors corresponding to the
eigenvalue _ϵ are different for ð∇vÞPMF and ð∇vÞPEF. For PEF, the
eigenvector corresponding to _ϵ is (1, 0, 0), which leads to the fact
that the extension axis and contraction axis are orthogonal. In case
of the canonical PMF, the eigenvector corresponding to _ϵ is
(1; _γ=2_ϵ;0), resulting in a system where the extension axis and
contraction axis are non-orthogonal (for simplicity, we will hen-
ceforth refer to “canonical” PMF as PMF). In PMF, the angle β
between the extension axis and the contraction axis (displayed in
Fig. 1), depends on the ratio of _γ to _ϵ since

β¼ cos �1 _γffiffiffiffiffi
_γ2

p
þ4_ϵ2

" #
ð10Þ

Two important parameters with regard to PBC implementation in
flow are the magic angle and strain period, both of which depend on
the eigenvalues of the velocity gradient tensor. Since the eigenvalues
of the velocity gradient tensor for PMF and PEF are the same, the
magic angle and strain period for PMF can be obtained in a similar
manner as in the case of PEF. However, the initial lattice configura-
tion for PMF is different from that of PEF because of the differences in
the eigenvectors discussed above. Details of the initial lattice vectors
for both PEF and PMF can be found in Jain (2013).

For the sake of completeness, the derivation of initial lattice
vector for PMF is discussed in Appendix A. Here, the steps involved in
the implementation of PBCs for PMF are briefly enumerated below:

1. An integer value of the parameter ~k (which controls both the
magic angle and the strain period) is chosen, such that ~kZ3,
and ~kA ½3;4;5;…�.

2. The eigenvalue ϕ (as defined in Kraynik and Reinelt, 1992) is
calculated using the expression

ϕ¼
~kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2�4

q
2

ð11Þ

3. The strain period τp is estimated using the expression
τp ¼ log ðϕÞ=_ϵ, where _ϵ is the elongational rate.

4. A choice is made for the values of N11 and N12, which are the
“11” and “12” elements of a 3�3 integer matrix that describes
the mapping between the deformed and original matrix, as
follows. Basically, a positive integer value of N11 is selected such
that an integer value of N12 is obtained using the expression

N12 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N11ð ~k�N11Þ�1

q
ð12Þ

Various possible values of N11 and N12 are listed in Kraynik and
Reinelt (1992).

5. Finally, the magic angle is calculated from

θ¼ tan �1 N11�ϕ

N12

� �
ð13Þ

Using initial lattice vectors that depend on the magic angle, the
simulation can be started and run until the strain period. The
lattice is then mapped back to its original state, and this way
the simulation can be carried out for an extended period.

With regard to the compatibility condition, as discussed earlier,
there is an issue with the length of one of the sides of theFig. 1. Extension and contraction axes in planar mixed flow.
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simulation box decreasing with time. Kraynik and Reinelt (1992)
have shown that the reproducibility condition automatically
guarantees the compatibility condition, i.e., they have shown that
the distance DðτpÞ between any two lattice points at time τp is
never less than the minimum lattice spacing Dmin, such that the
lattice points do not overlap. In simulations, the cutoff radius of
any inter-particle interaction potential is always chosen to be less
than Dmin=2, which ensures that the compatibility condition is
always satisfied. The derivation of Dmin for PMF has been discussed
by Hunt et al. (2010).

3.3. Macroscopic properties

Static and dynamic properties of polymer solutions at equili-
brium can be calculated once the trajectories of the time evolution
of all the beads on all the chains are obtained using Eq. (8). For
rheological properties, not only are the bead configurations
required, it is also necessary to know the forces acting on them.

Two important equilibrium static properties are (i) the end-to-
end distance and (ii) the gyration radius, which are used to assess
the mean dimension of a polymer chain (Doi and Edwards, 1986;
Rubinstein and Colby, 2003). The end-to-end distance is defined as
the mean square distance between the first and the last beads on a
chain

〈R2
e 〉¼ 〈ðrNb

�r0Þ2〉 ð14Þ

where 〈 � � � 〉 represents an ensemble average, and r0 and rNb
are

position vectors of the first and the last beads, respectively. The
mean square gyration radius, which is the mean square distance
between the beads and the centre of mass rcm of the chain, is
defined by

〈R2
g 〉¼

1
Nb

∑
Nb

μ ¼ 1
〈ðrμ�rcmÞ2〉 ð15Þ

where rcm ¼ ð1=NbÞ∑Nb
μ ¼ 1rμ.

The behaviour of polymer solutions, when subjected to an
imposed flow, is described by various material functions that are
defined in terms of the components of the stress tensor (Bird et al.,
1987a). In the absence of external forces, the stress tensor (non-
dimensionalized by npkBT , where np is the number of polymer
chains per unit volume), for a multi-chain system, can be shown to
be (Stoltz, 2006)

σ ¼ 1
Nc

∑
N

μ ¼ 1
∑
N

ν ¼ 1
〈rμνFexvμν 〉þ∑

Nc

∑
Nb �1

ν ¼ 1
〈Q νF

cðQ νÞ〉
" #

ð16Þ

In the above equation, the first term is the contribution due to
excluded volume forces among the beads, where rμν ¼ rμ�rν is the
vector between beads ν and μ, and Fexvμν is the excluded volume
force between them. The second term is the contribution due to
spring forces, where Q ν is the connector vector between the two
beads Q ν ¼ rνþ1�rν, and FcðQ νÞ is the spring force between the
beads ν and νþ1.

Once the stress tensor is calculated, the various solution
material functions can be estimated. In this work, we have focused
our attention on the polymer contribution to the solution's
viscosity. Hounkonnou et al. (1992) have proposed the following
expression for a generalized viscosity η for any arbitrary flow
gradient tensor:

η¼
_Γ : σ
_Γ : _Γ

ð17Þ

where _Γ is the rate of strain tensor, defined by _Γ ¼ ð∇vÞþð∇vÞT .
Using the definition of viscosity in Eq. (17), with ð∇vÞ ¼ ð∇vÞPMF
(see Eq. (3)), it is straightforward to show that in planar mixed

flows the viscosity is given by

η¼ �2_ϵðσxx�σyyÞþ2_γσxy
8_ϵ2þ2_γ2

ð18Þ

In the limit of pure planar shear flow (_ϵ ¼ 0), Eq. (18) implies

ηPSF ¼ �σxy
_γ

ð19Þ

while in the limit of pure planar elongational flow (_γ ¼ 0), Eq. (18)
leads to

ηPEF ¼ �σxx�σyy
4_ϵ

ð20Þ

Note that this definition of the viscosity in planar extension flows
differs from the conventional definition of the viscosity η1 used in
the rheology literature (Bird et al., 1987a),

η1 ¼ �σxx�σyy
_ϵ

ð21Þ

since ηPEF ¼ η1=4. The advantage of the Hounkonnou et al. (1992)
definition is that the generalized viscosity reduces to the New-
tonian viscosity in the limit of either _γ-0 or _ϵ-0. We use the
Hounkonnou et al. (1992) definition in all our discussions of planar
mixed flows. However, we use η1 when comparing results of the
multi-chain algorithm with single chain simulations in planar
extensional flows.

From Eqs. (18) to (20), the viscosity in planar mixed flows can
be rewritten as a linear combination of ηPSF and ηPEF,

η¼ ð4_ϵ2ηPEFþ _γ2ηPSFÞ
4_ϵ2þ _γ2

ð22Þ

Eqs. (19)–(22) have been used by Hounkonnou et al. (1992),
Baranyai and Cummings (1995), Todd and Daivis (1998), Daivis
et al. (2003) and Hunt et al. (2010) in their NEMD simulations for
the viscosity of various fluids. The PMF viscosity can also be
expressed in terms of the strength of mixed flow _Γ , and the
mixedness parameter χ, by

η¼ �
ffiffiffi
χ

p ðσxx�σyyÞþð1�χÞ σxy
_Γ ½4χþð1�χÞ2�

ð23Þ

In the current simulations of PMF, we use either Eq. (18) or Eq.
(23) to calculate the viscosity, depending on whether we use the
pair (_γ ; _ϵ), or ( _Γ ; χ) to describe the flow.

3.4. Validation of the BD algorithm

In order to validate the multi-chain BD flow algorithm, results
are compared with the results from single-chain BD simulations in
the dilute limit. Since the current algorithm is an extension of our
previous equilibrium multi-chain BD algorithm (Jain et al., 2012a),
the new additional features in the flow algorithm are the imple-
mentation of (i) periodic boundary conditions for planar mixed
flows and (ii) a neighbour-list consistent with PBCs for PMF.

The neighbour-list and PBCs do not play a role in the flow
simulation when hydrodynamic and excluded volume interactions
are ignored. This situation corresponds to the Rouse model for
which analytical expressions for various properties are known
(Bird et al., 1987b).

As a simple test of the basic aspects of the algorithm (such as of
the integrator with the flow term incorporated), hydrodynamic
and excluded volume interactions are switched off, and the
dimensionless mean square end-to-end distance 〈R2

e 〉, of chains
consisting of 10 beads in the ultra dilute limit, is computed as a
function of dimensionless shear rate _γ , and compared with the
prediction of the Rouse model (Bird et al., 1987b),

〈R2
e 〉Rouse ¼ 〈R2

e 〉eq 1þ NbðNbþ1ÞðN2
bþ1Þ_γ2

45

" #
ð24Þ
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where it may be recalled that 〈R2
e 〉eq ¼ 3ðNb�1Þ is the mean square

end-to-end distance at equilibrium (Bird et al., 1987b). The factor
of 3 in the expression for 〈R2

e 〉eq comes from using a length scale lH
which is ð1=3Þrd the mean square equilibrium size of a single
spring.

Note that the dilute and semidilute concentration regimes are
demarcated by the overlap concentration c⋆, which is defined by
c⋆ ¼Nb=½ð4π=3ÞðR0

g Þ3�, where R0g is the radius of gyration for an
isolated chain at equilibrium. Results are reported in terms of the
scaled variable, c=c⋆, which is calculated a priori by computing R0g
from single-chain BD simulations at equilibrium, for the relevant
set of parameter values. In order to compare results of the multi-
chain algorithm with dilute solution results, we typically choose
extremely small values of c=c⋆ to prevent any likelihood of chain–
chain interactions.

The symbols in Fig. 2 indicate the results for 〈R2
e 〉 obtained by

carrying out multi-chain BD simulations, while the solid line is the
Rouse model prediction. The increase in the mean size of the chain
with increasing strain rate is represented in Fig. 2 in terms of the
Weissenberg number Wi¼ λη _γ , which is a non-dimensional mea-
sure of the strain rate. The quantity λη is a characteristic relaxation
time defined by

λη ¼
½η�0Mηs
NAkBT

ð25Þ

where ½η�0 is the zero shear rate intrinsic viscosity of the solution,
M is the molecular weight, ηs is the solvent viscosity, and NA is
Avagadro's number. One can show (Prakash, 2002), in terms of the
non-dimensionalization scheme used here, that this definition
implies that λη ¼ η0, where η0 is the dimensionless zero shear rate
polymer contribution to the viscosity. Consequently, Wi¼ η0 _γ . The
Rouse model predicts a constant viscosity, independent of the
shear rate, which can be calculated analytically to be (Bird et al.,
1987b)

ηRouse ¼
N2

b�1
3

ð26Þ

It follows that for a 10 bead chain, λη ¼ 33. The multi-chain BD
simulations were carried out with Nc¼30, c=c⋆ ¼ 4:6� 10�5 and a
time step size Δt ¼ 0:005. Note that the Hookean spring force law,
which corresponds to b-1 in the FENE model, was considered in
all the validation studies for planar shear flow. The excellent
agreement between simulations and the Rouse model indicates
that the algorithm is performing satisfactorily.

In order to test the neighbour-list and PBCs implementations,
multi-chain BD simulations of dumbbells (Nb¼2) have been
carried out in the ultra dilute limit, with excluded volume

interactions between the dumbbell beads. In particular, we set
z¼1.7, Nc¼10, c=c⋆ ¼ 6� 10�12 and Δt ¼ 0:005. A large number of
independent runs (in the range of 103–106) were performed in
order to obtain results with acceptable error bars. We first
examine the behaviour of the algorithm in transient flows,
followed by steady state flows, in both planar shear and exten-
sional modes of deformation. The former is important in order
to ensure that there are no artefacts caused due to the periodic
re-mapping of the system after every strain period.

Fig. 3 displays the growth in the transient viscosity upon
inception of steady planar shear flow as a function of time. Clearly,
there is excellent agreement between the multi-chain and single-
chain simulations (for which the neighbour-list and PBCs are not
required). In particular, the well known overshoot phenomena in
such flows (Bird et al., 1987a), that occurs at high shear rates, is
accurately captured by the multi-chain simulations.

Fig. 4 displays the dependence of 〈R2
e 〉 and 〈R2

g 〉 on Weissenberg
number Wi at steady state. Unlike in the Rouse model, since
excluded volume interactions are present, analytical expressions
for the mean size of the chain and the zero shear rate viscosity are
not known. However, the following relationship between the zero
shear rate viscosity and the radius of gyration can be derived in
the absence of hydrodynamic interactions, by developing a
retarded motion expansion for the stress tensor (Prakash, 2001a),

η0 ¼
2
3
Nb〈R

2
g 〉 ð27Þ

This enables the calculation of the relaxation time λη once 〈R2
g 〉 is

known, without the need to estimate η0 by extrapolating finite
shear rate results for η to the zero shear rate limit. In this instance,
λη ¼ 1:184. Clearly, there is excellent agreement between the
multi-chain and single-chain BD simulation results.

Fig. 5 compares the steady state viscosity ratio η=ηRouse (com-
puted using Eqs. (19) and (26)), as a function of Wi, predicted by
the multi-chain and single chain BD simulations. As is well known,
the incorporation of excluded volume interactions into kinetic
theory models of polymer solutions leads to the prediction of
shear thinning (Prabhakar and Prakash, 2002; Kumar and Prakash,
2004). This is believed to arise for the following reason. The value
of the zero shear rate viscosity is greater in the presence of
excluded volume interactions than in its absence, because of the
swelling of the polymer coil. When flow is switched on, however,
the increase in the separation between segments of the chain
leads to a weakening of excluded volume interactions, and conse-
quently a decrease in the viscosity. The behaviour displayed in
Fig. 5 is in line with this expectation, with the viscosity decreasing
from its enhanced value at low shear rates, where excluded
volume interactions are still strong, to the Rouse viscosity in the

Fig. 2. Mean square end-to-end distance obtained by BD simulations compared
with Rouse model predictions, for bead-spring chains with Nb¼10 beads, as a
function of the Weissenberg number Wi.

Fig. 3. Comparison of the transient viscosity upon inception of steady planar shear
flow at non-dimensional times t, predicted by the multi-chain BD algorithm, with
the results of single-chain BD simulations in the dilute limit. Excluded volume
interactions are taken into account but hydrodynamic interactions are switched off.
The parameter values are as indicated in the figure legend.
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limit of high shear rates, where excluded volume interactions are
absent. Once again, the agreement between multi-chain and single
chain simulations indicates the robustness of the former
algorithm.

We turn our attention now to validation studies for planar
elongational flows. PEF simulations provide an opportunity to
discuss an aspect of the current implementation of the multi-
chain algorithm that differs from the usual practise in NEMD.
Essentially, at every time step, there is a need to evaluate forces
due to bonded interactions between the beads of a chain, and non-
bonded interactions between all the beads in the system. In the

course of a simulation, after sufficiently long time, inevitably some
of the chains leave the original simulation box because of the action
of flow. In NEMD simulations, at every time step, the centre of mass
of such chains is mapped back into the original simulation box
using the appropriate PBCs, and forces due to both bonded and
non-bonded interactions are then calculated. However, in our BD
simulations we find that this procedure is not always sufficient,
since if the chains are long (which is more common in BD
simulations), some parts of the chains may still remain outside
the original simulation box after the mapping. For the calculation of
forces due to non-bonded interactions, we resolve this problem by
mapping all beads that belong to segments of chains that lie outside
the original simulation box, using the appropriate PBCs, back into
the simulation box. This procedure, however, does not work for the
calculation of forces due to bonded interactions since in this case
we need to consider chains in their entirety. Using the periodic
image within the box, of segments that lie outside the simulation
box, leads to an inaccurate calculation of forces due to bonded
interactions. Note that this problem is not relevant for non-bonded
interactions, since they are always calculated pair-wise between
every bead in the simulation box, and every other bead, both in the
box and in all the periodic images. A naive alternative is to simply
keep track of the absolute positions of the N beads that were in the
original simulation box, as a function of time, and to evaluate forces
due to intra-chain bonded interactions at every time step. However,
in PEF simulations, since the numerical value of the x-coordinate of
beads increases continuously due to elongation in the x-direction,
such an implementation leads to numerical instability after a
sufficiently long time. This is illustrated in Fig. 6, which displays
the extensional viscosity η1 for a solution of FENE dumbbells with
finite extensibility parameter b¼50, at an elongation rate _ϵ ¼ 0:3, as
a function of time. The correct value of η1 for these parameters can
be shown, by carrying out single-chain BD simulations, to be
4.35170.002. It is clear from Fig. 6 that the value of η1 in the
multi-chain simulations reaches 4.35 very rapidly. However, after
about 25 strain periods, a catastrophic change is observed with η1,
settling eventually to a wrong value.

We have adopted the following alternative procedure for
calculating the forces due to bonded interactions. After each strain
period, we check to see if a chain is in close proximity of the
simulation box, based on whether jrν;xjo f 1L1, jrν;yjo f 2L2, or
jrν;zjo f 3L3, where, rν;x, rν;y and rν;z are the coordinates of bead ν,
and L1, L2 and L3 are the magnitudes of cell basis vectors L1, L2 and
L3, respectively. The factors f 1; f 2 and f3 are arbitrary parameters
that are used to set the upper limit on the numerical values of

Fig. 4. Comparison of the mean square end-to-end distance 〈R2
e 〉 and the mean

square gyration radius 〈R2
g 〉, at various Wi, predicted by the multi-chain BD

algorithm, with the results of single-chain BD simulations in the dilute limit.
Excluded volume interactions are taken into account but hydrodynamic interac-
tions are switched off. The parameter values are as indicated in the figure legend.

Fig. 5. Comparison of the viscosity η, at various Wi, predicted by the multi-chain
BD algorithm with the results of single-chain BD simulations in the ultradilute
limit.

Fig. 6. Illustration of numerical instability in planar elongational flow simulations
as a result of a naive implementation of the algorithm to evaluate intra-chain
bonded interactions.
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rν;x, rν;y and rν;z . Here, we set f 1 ¼ f 2 ¼ f 3 ¼ 2. If all the beads of a
chain are not in the proximity of the simulation box, then we
abandon this chain, and begin to follow the trajectory of the image of
this chain that is in the proximity of the simulation box. This does not
affect the dynamics of the particles in any way, since we are still
tracking the trajectories of the same set of N unique particles and
their images. This procedure ensures that the numerical values of the
coordinates of the beads never blow up and numerical instability is
avoided. Note that the numerical instability observed in NEMD
simulations of PEF is not related to the instability discussed here,
but is rather due to the lack of momentum conservation that arises
from numerical round-off errors (Todd and Daivis, 2000).

In all the PEF simulations reported here, we have used ~k ¼ 3 and
N11 ¼ 2, which are required for calculating the strain period and the
magic angle as discussed in the previous section. For PEF simulations,
spring forces cannot be modelled using the Hookean force law, which
permits the physically unrealistic indefinite extension of the spring.
Since the finite extensibility of the polymer is important in situations
where the molecule is likely to be close to full extension, such as in
strong shear or elongational flows, a FENE spring force is used here to
model spring forces in PEF.

As in the case of planar shear flow, we first examine the validity
of the algorithm for a transient flow, namely, the inception of
steady planar elongational flow. Fig. 7 displays the growth in the
extensional viscosity as a function of time. As is well known, the
viscosity increases monotonically as polymer chains unravel from
a coiled state to a stretched state under the action of flow, before
levelling off to a steady state value (Bird et al., 1987b). It is clear
that the multi-chain algorithm accurately captures the variation of
the viscosity with time. The perfect agreement between the multi-
chain and single chain simulations in both the transient flows
examined here indicates that the remapping of the system at each
strain period has been implemented successfully.

Multi-chain BD simulations have been carried out to obtain the
steady state value of η1 for a range of _ϵ, for z⋆ ¼ 0 and for z⋆ ¼ 10,
corresponding to theta and good solvents, respectively. We set
d⋆ ¼ 1, Nc¼500, c=c⋆ ¼ 2� 10�16 and the FENE parameter b¼50.
Simulation results for the two values of z⋆ are shown in Fig. 8
(a) and (b), respectively, obtained by multi-chain and single-chain
simulations, in terms of the Weissenberg number, which in this
case is defined by the expression, Wi¼ λη _ϵ. Clearly, in both cases,
there is excellent agreement between the multi-chain and single-
chain results, validating the implementation of the current BD
algorithm in planar extensional flows.

4. Planar mixed flows of polymer solutions at finite
concentrations

In this section, we describe the new results of this work,
namely, the prediction of polymer size and viscosity in planar

mixed flows at finite concentrations. We consider a simple system
of FENE dumbbells ðNb ¼ 2Þ with finite extensibility parameter
b¼25. The excluded volume parameters are chosen to be z⋆ ¼
1=

ffiffiffi
2

p
, and d⋆ ¼ 0:93. Data is presented for two values of c=c⋆:

(i) c=c⋆ ¼ 0:176 and (ii) c=c⋆ ¼ 1:0. The lattice parameters ~k and
N11 are chosen to be 3 and 2, respectively, for all the results
reported in this section.

The influence of shear rate _γ on the polymer size and viscosity
at a fixed value of elongation rate _ϵ is examined in Fig. 9(a) and (b),
while the influence of elongation rate _ϵ at a fixed value of shear
rate _γ is examined in Fig. 9(c) and (d). There are several features
that can be discerned from these figures, which we discuss in
turn below.

Fig. 9(a) indicates that at any value of shear rate _γ , the polymer
size increases with increasing elongation rate _ϵ. This is to be
expected since it is well known that chains unravel in extensional
flows. The interesting point to note is that for _ϵo1, 〈R2

e 〉 increases
with increasing _γ until it asymptotes to a value of 〈R2

e 〉� 10, while
for _ϵZ1, 〈R2

e 〉 decreases with increasing _γ , and appears to be
reaching the same asymptotic value. Several experimental and
theoretical studies of polymer conformations in pure simple shear
flow have shown that the polymer size increases with increasing
shear rate and typically saturates to roughly 40% of its fully
stretched size. The chain is never fully stretched in shear flow
because it experiences repeated stretching and tumbling events
(readers can find an extended discussion of chain conformations in
shear flow in Dalal et al., 2012, and references therein). This is
consistent with the results in Fig. 9(a) for _ϵo1, since the square of
the fully stretched contour length in the current simulations is
given by the parameter b¼25 (in non-dimensional units). The
decrease in polymer size with increasing shear rates, for _ϵZ1, can
be understood from the fact that at any given elongation rate _ϵ, the

Fig. 7. Comparison of the transient viscosity upon inception of steady planar
extensional flow, at non-dimensional times t, predicted by the multi-chain BD
algorithm, with the results of single-chain BD simulations in the dilute limit.

Fig. 8. Comparison of η1 predicted by the multi-chain BD algorithm with the
results of single-chain BD simulations, at various _ϵ , in the dilute limit: (a) for z⋆ ¼ 0
and (b) for z⋆ ¼ 10.
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flow becomes increasingly shear dominated at sufficiently high
values of _γ . This can be seen from the expression

_γ

_ϵ
¼ ð1�χÞffiffiffi

χ
p ð28Þ

For a fixed value of _ϵ, as _γ-1, the mixedness parameter χ-0. As
a result, at sufficiently high values of _γ , we expect the polymer size
to asymptote to its value in pure shear flow, regardless of the value
of _ϵ.

Fig. 9(b) shows that at any value of shear rate _γ , the polymer
contribution to the solution viscosity, η, increases with increasing
elongation rate _ϵ. This behaviour is directly correlated with the
size of the chain, since a larger chain size implies a larger volume
fraction occupied by the chain, and consequently a larger viscosity.
The shear thinning that is evident with increasing _γ , at all values of
_ϵ, is because of the inclusion of finite extensibility and excluded
volume interactions in the model. The influence of these non-
linear mesoscopic phenomena on dilute polymer solution beha-
viour in pure shear flows has been discussed in detail in Prabhakar
and Prakash (2002, 2004).

The unravelling of the polymer chain with increasing _ϵ, at all
values of _γ , is clearly evident in Fig. 9(c). As is well known, in pure
extensional flows, the conformation of a chain changes from being
coil-like at low extension rates to being fully stretched and rod-
like at high extension rates, undergoing a coil-stretch transition at
intermediate extension rates (Prakash, 2009). At the lowest values

of _ϵ, the increase in 〈R2
e 〉 with increasing _γ is discernible on the

scale of the figure. However, at values of _ϵ≳10, changes in _γ have
negligible influence on 〈R2

e 〉. From Eq. (28), it is clear that at a fixed
value of _γ , as _ϵ-1, the mixedness parameter χ-1. As a result, at
sufficiently high values of _ϵ, we expect the polymer size to
asymptote to its fully stretched value in pure elongational flow,
i.e., 〈R2

e 〉=b-1 as _ϵ-1, regardless of the value of _γ .
The behaviour of the polymer contribution to solution viscosity,

displayed in Fig. 9(d), can be understood in the light of the results
shown in Fig. 9(b) and (c). At any value of extension rate _ϵ, η
decreases with increasing shear rate _γ , because of shear thinning.
However, η increases with increasing _ϵ at all values of _γ , because
the chain undergoes a coil-stretch transition in this process. The
levelling off of η to a constant value at high extension rates is
related to the chain reaching its maximum state of stretch, at that
particular value of _γ .

A completely different and valuable insight is obtained when we
consider the behaviour of η as a function of _Γ and χ, instead of _γ and
_ϵ. In contrast to η, however, the variation of 〈R2

e 〉 with _Γ and χ does
not have many features that cannot be anticipated from the results
already displayed in Fig. 9(a) and (c). These observations are
discussed in greater detail below in the context of Fig. 10(a)–(d),
where results are presented in terms of a non-dimensional Weissen-
berg number defined by the expression, Wi¼ λη _Γ .

We anticipate that with increasing flow strength Wi, the
polymer size 〈R2

e 〉 will increase, regardless of the value of χ. This

Fig. 9. Variation of polymer size and viscosity with shear rate _γ , and elongation rate _ϵ , in planar mixed flow. (a) Variation of polymer size with _γ at various fixed values of _ϵ:
_ϵ ¼ 0:1, _ϵ ¼ 0:3, _ϵ ¼ 0:5, _ϵ ¼ 0:7, � _ϵ ¼ 1:0, _ϵ ¼ 2:0, _ϵ ¼ 3:0, n _ϵ ¼ 5:0; (b) variation of viscosity with _γ at various fixed values of _ϵ: _ϵ ¼ 0:1, _ϵ ¼ 0:3, _ϵ ¼ 0:5,
_ϵ ¼ 0:7, � _ϵ ¼ 1:0, _ϵ ¼ 2:0, _ϵ ¼ 3:0, n _ϵ ¼ 5:0; (c) variation of polymer size with _ϵ at various fixed values of _γ : _γ ¼ 0:1, _γ ¼ 0:3, _γ ¼ 0:5, _γ ¼ 0:7, � _γ ¼ 1:0,

_γ ¼ 2:0, _γ ¼ 3:0, n _γ ¼ 5:0:; (d) Variation of viscosity with _ϵ at various fixed values of _γ : _γ ¼ 0:1, _γ ¼ 0:3, _γ ¼ 0:5, _γ ¼ 0:7, � _γ ¼ 1:0, _γ ¼ 2:0, _γ ¼ 3:0, n _γ ¼ 5:0. In
these simulations, Nb ¼ 2, b¼25, z¼1, d⋆ ¼ 0:93, and c=c⋆ ¼ 0:176.
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is indeed the case, as displayed in Fig. 10(a). Since a polymer chain
tumbles continuously in shear flow while undergoing exponential
stretching in extensional flows, the change in 〈R2

e 〉 will become
more pronounced as the value of χ changes from 0 to 1, over a
similar range of values ofWi. This behaviour is evident in Fig. 10(c).

The behaviour of η displayed in Fig. 10(b) and (d) demonstrates
the existence of a critical value of the mixedness parameter, χc,
such that for χoχc, the flow is shear dominated, while being
extension dominated for values of χ4χc. For instance, as can be
seen from Fig. 10(b), the viscosity decreases with increasing flow
strength at χ ¼ 0, while increasingwithWi for all values of χ40:04.
At χ¼0.04, the viscosity appears to be nearly independent of flow
strength. The precise value of χc will be discussed in greater detail
shortly below, however, the alteration in the variation of η with Wi
can be seen more dramatically in Fig. 10(d), where the viscosity
appears to be shear thinning for values of χ close to 0, but
extension hardening for all large values of χ.

The existence of a critical mixedness parameter in mixed flows
of dilute polymer solutions was first demonstrated by Woo and
Shaqfeh (2003), who also proposed an explanation for the sig-
nificant change in behaviour observed in the response of the
solution for values of χ on either side of χc. They argued that when
a molecule, which is aligned along the extension axis, undergoes
thermal fluctuations, it suffers a tumbling like motion if it is
displaced sufficiently by a fluctuation to end up being aligned
along the contraction axis. This can only happen if the angle
between the extension axis and contraction axis is not too large.

As can be seen from Fig. 1 and Eq. (10), the magnitude of the angle
between the axis is determined by χ, since in terms of χ,
β¼ cos �1½ð1�χÞ=ð1þχÞ�. Since β increases with increasing χ, the
critical value χc determines when the angle is too large for thermal
fluctuations to cause a molecule to hop from being aligned along
the extension axis to being aligned along the contraction axis.
Shaqfeh and co-workers have also discussed the scaling of χc with
chain length Nb (Woo and Shaqfeh, 2003; Hoffman and Shaqfeh,
2007). However, they have not examined the dependence of χc on
c=cn, since they confined their attention to dilute solutions.

A close observation of the change of η with χ in Fig. 10(d), at
small values of χ, appears to suggest that the curves for the various
values of Wi cross each other at a unique value of χ. A zoomed in
version of the behaviour in this region is displayed in Fig. 11(a)–(c),
for dilute solutions, and at two non-zero values of c=cn, respec-
tively. The existence of a critical mixedness parameter that
demarcates a shear dominated from an extension dominated
regime is very clearly demonstrated in these figures. Interestingly,
at all concentrations, the value of χc is independent of the flow
strength Wi, and the value of η is constant, independent of Wi, at
χ ¼ χc. However, the value of χc appears to decrease weakly with
an increase in c=cn, from χc � 0:04, both for dilute solutions and at
c=cn ¼ 0:176, to χc � 0:03 at c=cn ¼ 1. This can be understood as
arising from a decrease in the fluctuations of the polymer coil
perpendicular to the extension axis, due to a crowding of mole-
cules with increasing concentration. We can anticipate that the
influence of concentration will become more significant for

Fig. 10. Variation of polymer size and viscosity with flow strength _Γ , and mixedness parameter χ, in planar mixed flow. (a) Variation of polymer size with _Γ at various fixed
values of χ: χ ¼ 0:0, χ ¼ 0:1, χ ¼ 0:2, χ ¼ 0:4, � χ ¼ 0:6, χ ¼ 0:8, χ ¼ 1:0; (b) variation of viscosity with _Γ at various fixed values of χ: χ ¼ 0:0, χ ¼ 0:04,
χ ¼ 0:1, χ ¼ 0:2, � χ ¼ 0:4, χ ¼ 0:6, χ ¼ 0:8, n χ ¼ 1:0; (c) variation of polymer size with χ at various fixed values of _Γ : _Γ ¼ 0:1, _Γ ¼ 0:3, _Γ ¼ 0:5, _Γ ¼ 0:7, �
_Γ ¼ 1:0, _Γ ¼ 2:0, _Γ ¼ 3:0, n _Γ ¼ 5:0; (d) variation of viscosity with χ for various fixed values of _Γ : _Γ ¼ 0:1, _Γ ¼ 0:3, _Γ ¼ 0:5, _Γ ¼ 0:7, � _Γ ¼ 1:0, _Γ ¼ 2:0,
_Γ ¼ 3:0, n _Γ ¼ 5:0. In these simulations, Nb ¼ 2, b¼25, z¼1, d⋆ ¼ 0:93, and c=c⋆ ¼ 0:176.
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c=cn41, when polymer coils begin to interact more strongly with
each other. However, a more detailed study of changes in the
fluctuations in polymer conformations, and the alignment of
molecules relative to the extension axis and contraction axis, with
changes in concentration, is required before a more complete
understanding of this observation can be achieved.

The constancy of η with Wi, when χ ¼ χc � 0:03, can be seen
more clearly in Fig. 12, where the dependence of η on Wi is
examined, at c=cn ¼ 1, for three values of χ, with two of the values
(χ¼0 and χ¼0.1), lying on either side of χc � 0:03. As discussed
earlier, the definition of the viscosity in Eq. (17) ensures that it
approaches the Newtonian value for _γ-0 and _ϵ-0. As a result, we
expect it to asymptote to the Newtonian value at all values of χ, in

the limit of Wi-0. This is indeed observed in Fig. 12 as Wi-0. At
higher values of Wi, the value of χ determines whether there is
shear thinning or extension thickening. At the critical value χc,
however, the solution remains Newtonian, independent of Wi. This
would suggest that in any ensemble of molecules, there are a
proportion of molecules undergoing tumbling motions and align-
ment, and a proportion of molecules undergoing unravelling from
coiled to stretched states, such that the net effect is no change of
viscosity with increasing deformation rate. Further studies are
definitely warranted to verify if this is indeed the case.

5. Conclusion

The implementation of periodic boundary conditions for planar
mixed flows, in the context of a multi-chain Brownian dynamics
simulation algorithm, has been described in some detail. Preli-
minary results have been obtained on the viscosity of polymer
solutions at finite concentrations, when subjected to planar mixed
flow. The fascinating behaviour exhibited in these flows, as
demonstrated by the various results reported here, has so far not
been examined experimentally. In particular, proving the existence
of the critical mixedness parameter, and exploring the influence of
concentration and chain length in determining its value, would be
of great interest. In the context of simulations, determining the
scaling of χc with concentration, solvent quality, and chain length,
and establishing the correlation between χc and the existence of
coil-stretch hysteresis would be extremely valuable. For dilute
polymer solutions, it is well known that the size of the coil-stretch
hysteresis window observed in planar mixed flows is significantly
influenced by the value of the mixedness parameter, vanishing as
χ-0, and having a maximum at χ-1. Studying the dynamics of
coil-stretch hysteresis under a variety of circumstances, including
varying the concentration, solvent quality and chain length, would
provide a fundamental understanding of the hysteresis phenom-
enon in particular, and of the behaviour of polymer solutions at
finite concentrations, in general. The mesoscopic BD algorithm
developed in the present work makes it possible to carry out such
studies.
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Appendix A. Initial lattice vector for PMFs

Kraynik and Reinelt (1992) point out in their seminal paper on
the derivation of PBCs for PEF that ð∇vÞPEF can be replaced by any
diagonalizable constant matrix with real eigenvalues and zero
trace. Hunt et al. (2010) have exploited this observation by noting
that ð∇vÞPMF is a diagonalizable matrix

_ϵ 0 0
_γ � _ϵ 0
0 0 0

0
B@

1
CA¼

1 0 0
_γ
2 _ϵ 1 0
0 0 1

0
B@

1
CA

_ϵ 0 0
0 � _ϵ 0
0 0 0

0
B@

1
CA

1 0 0
� _γ

2_ϵ 1 0
0 0 1

0
B@

1
CA¼ T � D � T�1

ðA:1Þ
where T is a transformation matrix that consists of the eigenvec-
tors of ð∇vÞPMF, and the diagonal matrix D has the same compo-
nent form as ð∇vÞPEF. The Kraynik–Reinelt periodic boundary
condition for PEF is written in terms of the lattice evolution
matrix Λ¼ expðDtÞ. Similarly for PMF, as the velocity gradient
tensor ð∇vÞPMF is diagonalizable, we can write the lattice evolution
matrix Λ0 as

Λ0 ¼ expðð∇vÞPMFtÞ ¼ expðT � D � T�1tÞ ¼ T � expðDtÞ � T�1 ðA:2Þ
As ð∇vÞPMF ¼ T � D � T�1 with D being a diagonal matrix, a new set
of initial basis vectors

b00
i ¼ b0

i � T�1 ðfor i¼ 1;2;3Þ ðA:3Þ

exists in PMF, such that this new set is reproducible in the case of
PMF (Hunt et al., 2010). The tensor T�1, thus, can be understood as
a mapping necessary to make the PEF basis vectors b0

i (in PEF)
reproducible in the PMF (see Kraynik and Reinelt, 1992; Jain, 2013
for more detail on PEF lattice basis vectors). An equation for the
lattice reproducibility condition for PMF can be written as

b0
i ¼ b00

i � Λ0 ðA:4Þ

where b0
i denotes the lattice vector at time τp (strain period). Using

this relation, and substituting Λ0 from Eq. (A.2) in Eq. (A.4) leads to
the following simplification:

b0
iðt ¼ τpÞ ¼ b00

i � Λ0ðτpÞ
¼ b0

i � T�1 � T � expðDtÞ � T�1

¼ b0
i � expðDtÞ � T�1

¼ Ni1b
0
1þNi2b

0
2þNi3b

0
3

h i
� T�1

¼Ni1b
0
1 � T�1þNi2b

0
2 � T�1þNi3b

0
3 � T�1

¼Ni1b
00
1 þNi2b

00
2 þNi3b

00
3 ðA:5Þ

This equation for the reproducibility condition is identical to the
one for PEF (Kraynik and Reinelt, 1992), except that b0

i is replaced
by b00

i . The vectors b00
1 , b

00
2 and b00

3 can be found easily since b0
1, b

0
2

and b0
3 are known for PEF. The mapping of Eq. (A.3) is applied to b0

i
to obtain a reproducible lattice under mixed flow as follows:

b00
1 ¼ b0

1 � T�1 ¼ ð cos θ sin θ 0Þ
1 0 0
� _γ

2_ϵ 1 0
0 0 1

0
B@

1
CA

¼ cos θ� _γ

2_ϵ
sin θ

� �
; sin θ;0

� �
ðA:6Þ

b00
2 ¼ b0

2 � T�1 ¼ ð� sin θ cos θ 0Þ
1 0 0
� _γ

2_ϵ 1 0
0 0 1

0
B@

1
CA

¼ � sin θ� _γ

2_ϵ
cos θ

� �
; cos θ;0

� �
ðA:7Þ

b00
3 ¼ b0

3 � T�1 ¼ ð0 0 1Þ
1 0 0
� _γ

2_ϵ 1 0
0 0 1

0
B@

1
CA

¼ ½0; 0; 1� ðA:8Þ

where θ is the magic angle, which is similar to that for PEF. In
contrast to PEF, where the basis lattice vectors are orthogonal, in
the case of PMF, they are non-orthogonal and not equal in length.
If the elongational rate is high or the shear rate is small, these
lattice vectors become almost orthogonal and equal in length.
These basis lattice vectors are used as an initial lattice
configuration.
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