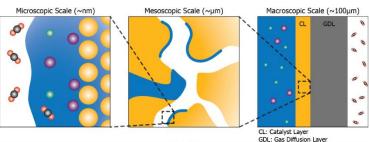
Developing new Lattice Boltzmann CFD Methods for Electrolyte Wetting in Electrolyzers

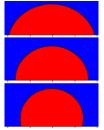
- Supervisors: Ezra Käs (daily supervisor e.kas@tudelft.nl), Dr. R.M. Hartkamp (Process & Energy, ME)
- **Prerequisites**: ME Advanced Fluid Mechanics (or equivalent), some numerical modeling experience (ME Multiphysics transport in Energy Materials **or** CFD for Engineers **or** AE CFD2: Discretization Techniques **or** WI Numerical Analysis **or** relevant personal/educational project).

Are you interested in learning about **multiphase CFD**, **Lattice Boltzmann** techniques, and **code development** in **C/C++**? Send an email to <u>e.kas@tudelft.nl</u>: we will teach you the skills you need!

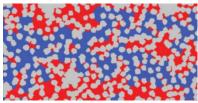
Background


The **Lattice Boltzmann method (LBM)** is sometimes used for micrometer-scale CFD in electrochemical cells, due to its scalability and ease of implementing boundary conditions. LBM solves for the dynamics of large numbers of quasi-molecular particles, which can be shown to be equivalent to the behavior of a continuous fluid obeying Navier-Stokes. **Color-Gradient (CG)** is a multiphase LBM that conserves some of LBM's remarkable algorithmic simplicity.

CG LBM fluid-fluid surface tension is enforced differently than solid-fluid wetting, despite being physically related phenomena. A self-consistent model would enable more confident modeling of the effects of wetting on **liquid electrolyte filling in gas diffusion electrodes (GDEs) for CO₂ reduction.**


A previous MSc thesis suggests that it is possible to **assign surface tension between solids and liquids** in CG LBM, bringing all capillary phenomena under the same framework. In this project, you would **finish developing this novel wetting implementation**, validate it against analytical or experimental data, and characterize its range of applicability.

Goals


- By the end of the literature review, you will be able to:
 - o Explain how LBM models single- and multiphase systems,
 - Discuss shortcomings of CG LBM in electrochemical device modeling,
 - Simulate simple multiphase systems with your own CG LBM solver in C/C++,
 - o Recommend a course of action on how to implement a new wetting implementation in CG LBM.
- Halfway through the thesis, you will have:
 - Extended our group's in-house C++ code with a CG model,
 - Formulated a new wetting framework for CG LBM.
- By the end of the thesis, you will have:
 - Extended our group's in-house code with your novel CG extension,
 - Explained your technique's underlying assumptions, tuning parameters, and thermodynamical implications through careful analysis of the equations,
 - Validated your extension against analytical or experimental data in tests relevant to electrochemical device modeling,
 - Assessed your extension's range of applicability, through analysis of your validation results.

Different physical scales in Gas-Diffusion Electrodes used in CO₂ reduction. This projects supports **mesoscopic-scale** modeling by developing tools to **model wetting of the electrolyte (blue) and gas** (white) on the solid catalyst (yellow)

Droplet displaying different contact angles on a solid surface by adjusting **solidliquid surface energies in CG-LBM.**

LBM simulation of distribution of liquid (blue) in gas (red) in a porous solid (grey). In a GDE, surface-tension varies with local conditions and solid-surface heterogeneities, requiring a flexible and tunable modeling approach (10.1103/prh3-xhcb)